
An Online Scripting Language for Teaching
Combinatorial Scientific Computing

M. Ali Rostami and H. Martin Bücker

Friedrich Schiller University Jena, Germany,
a.rostami@uni-jena.de, martin.buecker@uni-jena.de

Combinatorial Scientific Computing (CSC) [8, 9] consists of developing com-
binatorial models for problems in scientific computing, designing algorithms for
the solution of the resulting combinatorial subproblems, and engineering corre-
sponding software. CSC plays a prominent role in well-known areas like sparse
matrix computations [3], mesh generation [4], and parallel computing [5]. How-
ever, CSC is also ubiquitous in a less common field called automatic or algo-
rithmic differentiation [6] where computations involving Jacobian or Hessian
matrices are transformed into a rich set of graph problems. Teaching CSC is
tricky since the student should not only understand the combinatorial prob-
lem and the corresponding scientific computing problem, but also the intimate
connection between these two problem representations. EXPLAIN [2, 10, 7, 1, 11]
is a collection of interactive software modules currently developed at Friedrich
Schiller University Jena to help teaching CSC in the classroom. Each module
shows, side by side, a matrix encoding a problem from scientific computing and
its related graph problem. So, the student can observe and analyze modifica-
tions that result during the solution of a problem in both matrix and graph
views simultaneously.

We propose a scripting language on top of the Javascript library D3 (Data-
Driven Documents) for implementing a new EXPLAIN module. This scripting
language encapsulates D3 commands such that the student can edit and color
both graph and matrix without the need to think of the underlying system. At
the same time, some basic mathematical functions are added for the sake of
simplicity. Consider the so-called column compression module in EXPLAIN as
an example. This module implements a particular CSC problem involving sparse
Jacobian matrices and a corresponding graph coloring problem. More precisely,
we focus on a single step of a typical graph coloring algorithm. The following
script assigns a color to a vertex of a given graph that is different from the colors
of its neighbors:

1 var ns = neighbors(current);
2 var col_ns = get_colors(ns);
3 var new_col = min(diff(colors,col_ns));
4 color_vertex(current,new_col);
5 color_column(current, new_col);

Here, the function neighbors returns a set of all neighbors of a given vertex.
Similarly, the function get colors returns the colors of a given set of vertices.
The mathematical functions min and diff compute the minimum of a set and



the difference of two given sets, respectively. In this particular CSC problem,
the vertex of the graph represents a column of a sparse Jacobian matrix; see [2]
for more details. The last two lines of this script not only color the vertex of the
graph, but also the column of the Jacobian that is represented by this vertex.

Furthermore, we implement an online editor for this scripting language which
is available immediately adjacent to the graph and matrix views. Figure 1 shows
these two views together with the editor for the column compression module on
the right. The student can directly edit and run the code written in this editor.
The aim of this feature is to help students to interactively develop their own
new module without the need of extensive knowledge of D3. There is a set of
global variables which the student can edit in the upper input box of the editor
labeled “Globals.” Some of these global variables store important default values
like the graph type, the colors, and the starting matrix. The values of other
global variables can be assigned in the same way. There is another input box
labeled “Code” that defines a single step of an iterative algorithm. In this graph
coloring example, the order of processing the vertices is important. This order
can be selected from a default list or is specified by the variable order. An
animation of this graph algorithm can be controlled by various buttons below
the editor. This graph algorithm can also be carried out by clicking on the graph
vertices.

The implementation first evaluates the wrapper functions for D3 and then
passes the contents of this editor to the eval function of Javascript. The contents
of the editor can be sent either line by line or as a whole function, depending on
an option selectable by the student.

Fig. 1. The online editor of the corresponding module is visualized next to the graph
and matrix. The code contained in the editor is written in a simple scripting language.
The student first specifies the order of processing the vertices and this code is then
executed using that order.

Keywords: combinatorial scientific computing, graph algorithms, education,
scripting language



References

1. Bücker, H.M., Rostami, M.A.: Interactively exploring the connection between bidi-
rectional compression and star bicoloring. In: Koziel, S., Leifsson, L., Lees, M.,
Krzhizhanovskaya, V.V., Dongarra, J., Sloot, P.M.A. (eds.) International Confer-
ence on Computational Science, ICCS 2015 — Computational Science at the Gates
of Nature, Reykjav́ık, Iceland, June 1–3, 2015. Procedia Computer Science, vol. 51,
pp. 1917–1926. Elsevier (2015)

2. Bücker, H.M., Rostami, M.A., Lülfesmann, M.: An interactive educational module
illustrating sparse matrix compression via graph coloring. In: 2013 International
Conference on Interactive Collaborative Learning (ICL), Proceedings of the 16th
International Conference on Interactive Collaborative Learning, Kazan, Russia,
September 25–27, 2013. pp. 330–335. IEEE, Piscataway, NJ (2013)

3. Duff, I., Erisman, A.M., Reid, J.: Direct Methods for Sparse Matrices. Numerical
Mathematics and Scientific Computation Series, Oxford University Press (2017)

4. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Mono-
graphs on Applied and Computational Mathematics, Cambridge University Press
(2001)

5. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Comput-
ing. Pearson, 2nd edn. (2003)

6. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. SIAM, Philadelphia, PA, 2nd edn. (2008)

7. H. M. Bücker, M. A. Rostami: Interactively exploring the connection between
nested dissection orderings for parallel Cholesky factorization and vertex separa-
tors. In: IEEE 28th International Parallel and Distributed Processing Symposium,
IPDPS 2014 Workshops, Phoenix, Arizona, USA, May 19–23, 2014. pp. 1122–1129.
IEEE Computer Society, Los Alamitos, CA, USA (2014)

8. Hendrickson, B., Pothen, A.: Combinatorial Scientific Computing: The Enabling
Power of Discrete Algorithms in Computational Science, pp. 260–280. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007)

9. Naumann, U., Schenk, O.: Combinatorial Scientific Computing. Chapman & Hal-
l/CRC, 1st edn. (2012)

10. Rostami, M.A., Bücker, H.M.: Interactive educational modules illustrating sparse
matrix computations and their corresponding graph problems. In: für Informatik,
G. (ed.) Informatiktage 2014, Fachwissenschaftlicher Informatik-Kongress, 27. und
28. März 2014, Hasso Plattner Institut der Universität Potsdam, GI-Edition:
Lecture Notes in Informatics (LNI) – Seminars, vol. S–13, pp. 253–256. Köllen
Druck+Verlag GmbH, Bonn (2014)

11. Rostami, M.A., Bücker, H.M.: An educational module illustrating how sparse
matrix-vector multiplication on parallel processors connects to graph partition-
ing. In: Hunold, S., Costan, A., Giménez, D., Iosup, A., Ricci, L., Gómez Re-
quena, M.E., Scarano, V., Varbanescu, A.L., Scott, S.L., Lankes, S., Weidendorfer,
J., Alexander, M. (eds.) Euro-Par 2015: Parallel Processing Workshops, Euro-Par
2015 International Workshops, Vienna, Austria, August 24–28, 2015, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 9523, pp. 135–146. Springer,
Cham, Switzerland (2015)


