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Constraint programming (CP) is a declarative programming paradigm in
which the problem is modeled as a group of relations over a finite set of variables.
Formally, A constraint network R is a triple (X,D,C), which consists of:

– a finite set of variables X = {x1, . . . , xn},
– a set of respective finite domains D = {D1, . . . , Dn}, where Di is the domain

of the variable xi, and
– a set of constraints C = {c1, ..., ct}, where a constraint cj is a relation Rj

defined on a subset of variables Sj , Sj ⊆ X.

Note that from the problem definition point of view, a problem modeled as
a constraint network is also called constraint satisfaction problem, or CSP. By
using constraint programming, one can easily attack some NP-complete prob-
lems in a reasonable execution time without developing specific, and fairly often
complex, algorithms.

Backtrack search and constraint propagation lie at the heart of the techniques
for constraint programming. But the potential of these techniques might have
been exhausted due to the extensive and effective researches in this area during
last decades. On the other hand, parallel computing is often an effective approach
to enhance the performance of sequential algorithm. However, the research of
parallel constraint solving is still in its infant stage although parallel search and
parallel propagation for constraint programming have been studied.

This paper aims at presenting a new mapping algorithm as the first step for
parallel constraint solving, where the term parallel constraint solving refers to
executing the whole constraint network simultaneously by means of partition and
mapping it onto the different cores. The idea behind this parallel constraint solv-
ing is to divide the original intractable problem into the tractable sub-problems
because many NP-complete and NP-hard problems can be solved in polynomial
time if the corresponding hypergraph has the bounded hypertree-width [1]. A
hypergraph H = (V, S) corresponding to a constraint network N is composed
of a set of vertexes V = {v1, ..., vn} and a set of hyperedges of these vertexes
S = {s1, ..., si}, where each hyperedge si might contain more than two vertexes.
Moreover, each hyperedge si in a hypergraph H has a one-to-one correspon-
dence with a constraint in the corresponding constraint network N ; similarly,
any vertex vn in the hypergraph H has a one-to-one correspondence with a vari-
able in N as well. A hypertree of a hypergraph H is a triple (T, χ, λ), where
T = (VT , ET ) denotes the tree structure of the hypergraph, χ and λ are labeling
functions that stand for the set of variables and the set of constraints of each



node for the hypertree. The hypertree width of a given hypertree is the maximal
number of hyperedges (constraints) among all nodes of that hypertree.

Although there exists several hypertree decomposition algorithms, e.g. det−
k − decomp [1], in the literature published in the last decades, the target de-
composition tree of these algorithms are the hypertree with width as small as
possible because the small hypertree width indicates the problem can be solved
faster. Hence, we develop a dedicated hypergraph decomposition method detk−
k−decomp for mapping constraints onto cores. The idea behind det−k−CP is
to utilize the property that one edge between two nodes can be eliminated with-
out changing the set of all solutions for the constraint network [2] because there
exists an alternative path between the two nodes. The edge between two nodes
represents shared variables. As can be seen from Figure 1, the edge between
node c1 and c3 can be removed since there is an alternative path c1 → c2 → c3
from c1 to c2.
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Fig. 1: A simple constraint network shows the edge between two nodes that can
be eliminated.

The target decomposition tree of det − k − CP can be represented by a
degeneration decomposition tree in which the edges between any pair of non-
adjacent nodes are eliminated, and only the edges between adjacent nodes are
preserved. A target degeneration decomposition tree with four nodes for a given
constraint network is shown in Figure 2 below, where solid lines are drawn for
edges between adjacent nodes, and the dot-dashed lines stand for the edges
between non-adjacent nodes that can be removed. Besides, the path from Node1
to Node4, which is drawn by solid line in 2, is also called main path of the
degeneration decomposition tree.
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Fig. 2: A degeneration decomposition tree decomposed by det − k − CP . The
number next to each arc denotes the execution order of adding procedure.
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(a) The original constraint network

c1(x1,x2,x3)
c2(x3,x4,x5)
c1(x1,x2,x3)

c3(x2,x5,x6)
x1,2,3

x2

x2,5

(b) A simple degeneration decomposition tree

Fig. 3: Adding procedure for eliminating non-adjacent edge

We are now going to sketchily introduce the details of algorithm of det −
k − CP by using Figure 2, and Figure 3. In the first step, det − k − CP sorts
the constraints based on the weight of each constraint, where the weight of a
constraint depends on the time complexity propagation algorithm used by the
constraint, the size of domains for variables, and the number of variables for the
given constraint network. Then, det−k−CP adds constraints from ith node onto
i+ 1th node if necessary, so that the shared variables between two non-adjacent
nodes are covered by the corresponding main path's variables from node j to
node k, where j ≤ i < i+ 1 ≤ k. For example, in Figure 3a, a simple constraint
network is composed of three constraints in which the edge between c1 and c3 is
due to common shared variable x2. By adding c1 to the second node, the edge
between c1 and c3 can be eliminated since the main path contains x2 now, as
shown in Figure 3b. We call this procedure is adding procedure for eliminating
non-adjacent edge. det− k −CP carries out the adding procedure from the tail
to the head of degeneration decomposition tree in turn, e.g., in Figure 2, the
edge between Node2 and Node4 is firstly removed, and then is the edge between
Node1 and Node3. Finally, the edge between Node1 and Node4 is removed.
However, the adding procedure cannot ensure the hypergraph of a given con-
straint network is decomposed successfully. For instance, in order to eliminate
the edge between Node1 and Node3 in Figure 2, det − k − CP might need to
add constraints from Node1 to Node2 so that the main path between Node1
and Node3 can cover arc 2. The adding procedure to Node2 might regenerate
the arc 1 that had been removed by the adding procedure to Node3 because
the new common shared variables between Node2 and Node4 might reappear.
Therefore, in the last step of det − k − CP , the stochastic exchange for nodes
is introduced. The heuristic used by stochastic exchange could be randomly ex-
change, switching nodes that have the fewest and most number of constraints, or
changing the permutation of the indexes of degenerate decomposition tree in or-
der. For instance, if the number of nodes of a degenerate decomposition tree is 4,
we might firstly use the permutation (0,1,2,3), then (0,1,3,2) and so on. In short,
det − k − CP performs adding procedure for every edge between non-adjacent



nodes, and then the stochastic exchange will be executed if the hypergraph of
a given constraint network is not decomposed successfully. Adding procedure
and stochastic exchange are carried out in each iteration until a degeneration
decomposition tree is obtained.

We have briefly presented the decomposition algorithm det−k−CP to map
constraints for parallel constraint solving. This algorithm can be solved in poly-
nomial time, because even if there is no degeneration decomposition tree to be
found, the algorithm will eventually stop, in that case, every node would contain
the entire constraint network. But we have not encountered such a situation
so far after evaluating the benchmark suit provided by Gottlob et al. used in
study [1]. The future work will be focused on using det − k − CP to gain the
speed up for parallel constraint solving.
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