
Vectorizing Mathematical Expressions
(Extended Abstract)

Joachim Giesen, Julien Klaus, Sören Laue?

Friedrich-Schiller-University Jena, Germany
{joachim.giesen,julien.klaus,soeren.laue}@uni-jena.de

Abstract. Mathematical expressions are ubiquitous in science, engi-
neering and business. They are mostly given in index form, where el-
ements of a data set are addressed by an index. A different, but equiva-
lent representation for mathematical expressions is their vectorized form,
where data sets are represented by vectors or matrices. Typically the
vectorized representation of an expression can be evaluated much faster,
because it can easily be mapped onto highly tuned libraries for basic
linear algebra subroutines (BLAS). Evaluating expressions in vectorized
form can be a few orders of magnitude faster than evaluating the same
expression in index form.
In this paper we present a tool that transforms a mathematical expres-
sion in index form, into an equivalent vectorized form. We define a simple
grammar for index form expressions, which is parsed into an expression
tree. The expression tree is then transformed into another tree that only
contains tensors and operations on tensors. Finally the vectorized ex-
pression is derived by applying simple substitution rules on the tensor
tree. Numerical tests demonstrate the efficiency and correctness of our
approach.

Keywords: mathematical expressions, vectorizing, vector unit

1 Introduction

Interpreted languages like Matlab or Python often suffer from slow execution of
loops [4,5]. Loops occur naturally in mathematical expressions containing, among
others, a universal quantifier or a sum symbol. Two examples of mathematical
problems that contain these symbols are logistic regression (LR) or support
vector machines (SVM). Both problems are used for classifying labeled data
points. Given a data matrix X ∈ Rm×n and a label vector y ∈ {−1,+1}m, the
goal of both problems is finding a hyperplane that separates the points with label
−1 from the points with label +1. A separating hyperplane {x ∈ Rn|x>w+b = 0}
is represented by w ∈ Rn the normal vector to the hyperplane and the offset

b ∈ R. Note that |b|
‖w‖ is the distance of the hyperplane from the origin.

? Sören Laue acknowledges the support of Deutsche Forschungsgemeinschaft (DFG)
under grant LA-2971/1-1.

The logistic regression problem reads as:

min
w∈Rm

n∑
i=1

log

1 + exp

 m∑
j=1

−yi · wj ·Xij + b

 , (LR)

and the support vector machine problem is the following optimization prob-
lem:

min
w,ξ

1

2

n∑
i=1

w2
i + c

m∑
i=1

ξi

s.t. ∀i :

m∑
j=1

yi · (wj ·Xij + b) ≥ 1− ξi

∀i : ξi ≥ 0.

(SVM)

The equivalent representation for the logistic regression in vectorized form is the
following:

min
w∈Rm

1T · log(1 + exp(−y � (X · w + 1 · b))), (LRV)

and the support vector machine is given as:

min
w,ξ

1

2
· ‖w‖2 + c · 1T · ξ

s.t. 1T · (y � (X · w + 1 · b)) ≥ 1− ξ
ξ ≥ 0,

(SVMV)

where 0 and 1 are the vectors with only zeros and ones, ‖·‖2 the Euclidean norm
and � is the element-wise multiplication. We are interested in a tool, that derives
the vectorization automatically.

Usually two nested loops over the indices i and j are used to evaluate the
expressions from above. It has been suggested by many authors [2,7] that the
problems should be vectorized by hand, since the execution of these loops can
be slow.

Vectorization is often nontrivial especially for more complex expressions. Fur-
thermore, many different numerical packages such as Theano [6], Tensorflow [3],
or Numexpr [1] require the input to be in vectorized form, i.e., in the form of
linear algebra matrix expressions.

In the remainder of this paper we demonstrate our approach for automati-
cally vectorizing mathematical expressions, using logistic regression and support
vector machines as examples. After briefly describing the transformation and
validation in Section 2, we demonstrate the speedup in evaluating the vectorized
expressions experimentally in Section 3, concluding in Section 4.

2 Building Blocks of the Vectorization Tool

Our vectorization tool has three components, namely a parser, a transformation
and a validation module that we briefly describe in this section.

2.1 Parsing

For our implementation we have restricted the allowed operations and variables.
For the allowed mathematical expressions we have defined a simple grammar,
that is shown in Figure 1 using simple EBNF rules.

〈formula〉 ::= { ’forall’ ’[’ 〈index 〉 {’,’ 〈index 〉 } ’] ’} 〈compassign〉

〈compassign〉 ::= 〈expr〉 [(’:=’ | ’==’ | ’>’ | ’>=’ | ’<’ | ’<=’) 〈expr〉]

〈expr〉 ::= 〈term〉 {(’+’ | ’-’) 〈term〉 }

〈term〉 ::= 〈factor〉 {(’*’ | ’/’)}

〈atom〉 ::= number | 〈function〉 ’(’ 〈expr〉 ’)’ | 〈variable〉

〈index 〉 ::= alpha

〈variable〉 ::= alpha+ [’[’ 〈index 〉 [’,’ 〈index 〉’]’]

〈function〉 ::= ’sin’ | ’cos’ | ’exp’ | ’log’ | ’sign’ | ’sqrt’ | ’abs’ | ’sum’ ’[’ 〈index 〉 ’]’

Fig. 1. Grammar for mathematical expression.

Using this grammar we can represent the logistic regression problem as fol-
lows:

sum[i](log(1 + exp(sum[j](−y[i] ∗ w[j] ∗X[i, j] + b)))). (1)

The first constraint of the support vector machine can be represented as:

forall[i] : sum[j](y[i] ∗ (w[j] ∗X[i, j] + b)) >= 1− xi[i]. (2)

After successfully parsing the expression into an expression tree, the transfor-
mation into vectorized form follows.

2.2 Transformation

The transformation into vectorized form works in a bottom-up fashion, by iter-
ating through the nodes of the expression tree and replacing the nodes according
to their operation. During the transformation the dimensions of the nodes are
tracked and adjusted if needed. For example, while transforming the logistic
regression expression tree, the algorithm reaches the node + with already trans-
formed subtrees 1 and exp(−y. ∗ (X ∗w+ vector(1) ∗ b)). Since the right subtree
is a vector and the left subtree is a scalar, the algorithm changes the left subtree
to vector(1)∗1. After this change the + operator can be processed. Adapting the
whole transformation step to tensors reduces the number of dimension checks
and simplifies the algorithm. Finally, the resulting vectorization is determined
by simple substitutions of tensor algebra expressions by linear matrix algebra.

After a successful transform the algorithm produces the following vectoriza-
tion for logistic regression example:

sum(log(vector(1) + exp(−y. ∗ (X ∗ w + vector(1) ∗ b)))), (3)

and for the first constraint of the support vector machine:

y. ∗ (X ∗ w + vector(1) ∗ b) >= vector(1)− xi, (4)

where vector(1) is the vector of all ones and .∗ is the element-wise multiplication.

2.3 Verification

For validating the vectorization against the given formula in index form we per-
form a numerical check as well as a dimension check. The numerical verification
simply calculates values for the unvectorized formula and the vectorized form
and checks for equality. The second test compares the dimension of the two for-
mulas. Both must be equal to the number of unbound indices. Only if these tests
are correct the vectorization is assumed to be valid.

3 Experiments

For demonstrating the efficiency of our vectorization we have implemented two
different versions for each problem. The first version uses loops to implement
Equations 1 and 2, whereas the second version directly implements the vector-
izations (Equations 3 and 4) using Numpy [8]. From Equations 2 and 4 we only
use the left term for the time measurements which is the most time consuming
part. Figures 2 and 3 show the evaluation times for the two problems. The run-

Fig. 2. The comparison of unvectorized formulas against its vectorized form in Python
in a logarithmic plot.

Fig. 3. The comparison of unvectorized formulas against its vectorized form in Matlab
in a logarithmic plot.

ning times where obtained with Python 3.6 and Matlab R2016a. We generated
random data sets X ∈ Rm×n and y ∈ {−1,+1}m with m = n. During the exper-
iments the best of three runs for each problem size is reported. We observe, that
the vectorized expression for logistic regression can be evaluated three orders of
magnitude faster than the unvectorized expression. Similar results hold for the
support vector machine problem.

4 Conclusion

We have presented a tool for automatically transforming some mathematical
expressions into their vectorized form. The experiments corroborate the practical
benefits of vectorizing mathematical expressions. Especially for large data sets
the vectorization mathematical expressions can result in a speedup of a few
orders of magnitude. In the future we will include more operators and hence
extend the set of mathematical expressions that can be transformed.

The presented tool is available at http://www.autovec.org.

References

1. Numexpr: Fast numerical expression evaluator for numpy, https://github.com/

pydata/numexpr, accessed: 06.07.2017
2. Techniques to improve performance, https://de.mathworks.com/help/

matlab/matlab_prog/techniques-for-improving-performance.html, accessed:
06.07.2017

3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irv-
ing, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,

http://www.autovec.org
https://github.com/pydata/numexpr
https://github.com/pydata/numexpr
https://de.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
https://de.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
http://tensorflow.org/, software available from tensorflow.org

4. Cai, X., Langtangen, H.P., Moe, H.: On the performance of the python programming
language for serial and parallel scientific computations. Sci. Program. 13(1), 31–56
(Jan 2005), http://dx.doi.org/10.1155/2005/619804

5. David Ascher, Paul F. Dubois, K.H.J.H.T.O.: Numerical python. Tech. rep.,
Lawrence Livermore National Laboratory, Livermore, CA 94566 (2001)

6. Theano Development Team: Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016), http://
arxiv.org/abs/1605.02688

7. Varoquaux, G.: Writing faster numerical code, http://www.scipy-lectures.org/
advanced/optimizing/#writing-faster-numerical-code, accessed 06.07.2017

8. van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: A structure for
efficient numerical computation. Computing in Science Engineering 13(2), 22–30
(March 2011)

http://tensorflow.org/
http://dx.doi.org/10.1155/2005/619804
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://www.scipy-lectures.org/advanced/optimizing/#writing-faster-numerical-code
http://www.scipy-lectures.org/advanced/optimizing/#writing-faster-numerical-code

	Vectorizing Mathematical Expressions(Extended Abstract)
	Introduction
	Building Blocks of the Vectorization Tool
	Parsing
	Transformation
	Verification

	Experiments
	Conclusion

