
Hyperedge Replacement Grammars for
Lock-sensitive Analysis of Parallel Programs

Sebastian Kenter

Institut für Informatik, Westfälische Wilhelms-Universität, Germany
s.k@wwu.de

Abstract. Reachability problems for parallel programs in the presence
of locks are often close to the border of decidability. We consider Dy-
namic Pushdown Networks modelling parallel programs with unbound-
edly many locks and use Hyperedge Replacement Grammars (HRGs) to
analyze the graph structures that represent their executions, exploiting
the decidability of the emptiness of a set of graphs generated by an HRG
and satisfying certain logical formulas.

Keywords: parallel programs, dynamic pushdown networks, locking,
graph grammars

1 Introduction

More and more parallel programs are being used in many areas, and it can be
very important to find out if they work properly. Thus we analyze programs
with multiple threads and locking, and we are interested in the lock-sensitive
reachability problem which asks if there is a feasible execution in this setting
reaching a state from a given set. Such problems are often close to the border of
decidability, and many methods together with restrictions of the general setting
have already been developed for solving them. We now analyze programs with
unboundedly many locks, which has not been done by prior work in this field. Our
approach is to prove decidability by looking at certain graph structures arising
from these kinds of programs, and we use Hyperedge Replacement Grammars
(HRGs) as a tool to construct those graphs.

2 Program model

The program model we consider in our analysis is based on Dynamic Pushdown
Networks (DPNs), which already have been subject to analyses developed in
the past (e.g. [1]). A program execution consists of several threads and is run
on a state machine with a pushdown for each thread, simulating a call stack
for procedures with unbounded recursion depth. New threads can be created
dynamically, which leads to unboundedly many threads in this model. Synchro-
nisation between the threads is realized via locking, which is required to abide
certain restrictions here:



– Each lock can be acquired (once) and released later by the same thread.
– As usual, no thread can acquire a lock while it is acquired by another thread.
– At the beginning of an execution, no lock is acquired.
– Whenever a thread acquires another lock l2 after a lock l1, it afterwards has

to release l2 before it releases l1 (nested locking).

As a novel extension to this model, called n-Fold Locking Dynamic Pushdown
Network (nLDPN), we also allow the dynamic creation of locks, so that the
number of locks is unbounded as well. In order to capture the typical situation in
common programming languages while keeping the model as simple as possible,
we store the locks in a fixed number of procedure-local variables and implement
mechanisms to pass them over between procedures.

Formally, an nLDPN is a tuple M = (V,Act, P, Γ,∆, p0, γ0) where

– V = {v1, . . . , vn} is a finite set of variables,
– Act = LockOp∪Ass where LockOp = {acq v, rel v | v ∈ V }∪{ε},Ass = {V →

(V ∪ {new})},
– P is a finite set of control states with initial state p0 ∈ P ,
– Γ is a finite set of stack symbols with initial symbol γ0 ∈ Γ ,
– and ∆ is a finite set of rules of one of the following forms:

(base) pγ
lo
↪→ p′γ′

(push) pγ
a,ω
↪→ p′γ1γ2

(pop) pγ
ε
↪→ p′

(spawn) pγ
a
↪→ p′γ′ . psγs

Here lo ∈ LockOp, a ∈ Ass, and ω is a return value mapping with signature
V → (V ∪ {void}).

This model allows for assigning either the caller’s variable values or newly
created lock objects (new) to the procedure’s local variables on procedure call
(push) and either overwriting the caller’s variables with return values or or not
(void) on procedure return (pop). The locks are acquired and released via the
names of the variables that store them using the operations acq v and rel v,
respectively. The semantics, which is not given here in detail, is based on an
infinite pool of locks and keeps track of the state, stack content, and variable
assignment for each thread, as well as the state of each lock. Because the variables
are procedure-local, the assignments are stored on the pushdowns along with the
stack symbols so that the caller’s values can be accessible again after a procedure
returns.

3 Execution Trees

The graph structures that reflect the behaviour of nLDPNs, while abstracting
away from the locking mechanism, are called Execution Trees. An Execution



Tree is defined such that each vertex represents a program state of a single
thread and the paths show all threads’ executions that are possible in a given
nLDPN. The edges of the tree are labelled with information on the transitions
performed by the executions of the threads, taken from the set ∆. Branching
in the tree is caused by spawn rules, so that the spawned thread is represented
by a different branch, and also by push rules, in which case one branch shows
the steps executed up to the corresponding pop operation (i.e., the execution of
the “called procedure”) and the other one shows everything that happens in the
same thread after that (given the called procedure terminates).

Figure 1 shows an example execution of an nLDPN with P = {p0, . . . , p9}, Γ =
{γ, γ′, γ′′}, and ∆ consisting of the following base, push and pop rules:

p0γ ↪→ p1γ p4γ
′′ ↪→ p5 p7γ

rel v1
↪→ p8γ

p1γ
a1
↪→ p2γ

′γ p5γ
′ acq v1
↪→ p6γ

′ p8γ
acq v1
↪→ p9γ

p3γ
′ a2
↪→ p4γ

′′γ′ p6γ
′ ↪→ p7 p10γ

′ ↪→ p11γ
′

and the following spawn rule:

p2γ
′ asp

↪→ p3γ
′ . p10γ

′

We furthermore assume the initial assignment v1 7→ l1, let a1(v1) = a2(v1) =
asp(v1) = v1, and do not consider return value mappings here.

p0γ ↪→ p1γ

p1γ
a1
↪→ p2γ

′γ p6γ
′ ↪→ p7

p2γ
′ ↪→ p3γ

′
p2γ

′ asp
↪→ p10γ

′

p3γ
′ a2
↪→ p4γ

′′γ′p10γ
′ ↪→ p11γ

′ p4γ
′′ ↪→ p5

p7γ
rel v1
↪→ p8γ

p8γ
acq v1
↪→ p9γ

p5γ
′ acq v1
↪→ p6γ

′

Fig. 1. Example Execution Tree.

The existence of a well-formed Execution Tree showing in its leaves a certain
nLDPN configuration (i.e., control states and stack content for each thread)
proves that this configuration would be reachable from the considered initial



configuration in the considered nLDPN if there were no locking instructions.
However, in presence of locking, one additionally has to find a lock-sensitive
schedule, i.e. a global ordering of all the steps given in a tree such as to avoid
deadlock situations, and those trees where this is impossible (which are not
schedulable) have to be ruled out. In order to take the this into account, we
enrich the trees by the following elements:

– return edges on terminating push branches
– an additional vertex l for each lock l ∈ L
– an additional edge v → l if l is non-finally acquired at v
– an additional edge l→ v if l is finally acquired at v

By the term final acquisition we mean an acquisition of a lock that is never
followed by a release of this lock in the considered tree. These enriched structures
are called Augmented Execution Trees (AETs) (although they are no longer
trees). The augmentation arising in our running example is shown in figure 2.

l1

p0γ ↪→ p1γ

p1γ
a1
↪→ p2γ

′γ p6γ
′ ↪→ p7

p2γ
′ ↪→ p3γ

′
p2γ

′ asp
↪→ p11γ

′

p3γ
′ a2
↪→ p4γ

′′γ′p11γ
′ ↪→ p12γ

′ p4γ
′′ ↪→ p5

p7γ
rel v1
↪→ p8γ

p8γ
acq v1
↪→ p9γ

p5γ
′ acq v1
↪→ p6γ

′

Fig. 2. Augmentation for the example Execution Tree.

In such a graph all edges between program states represent happens-before
relations, and with the help of the other vertices and edges one can tell rather
plainly if these temporal constraints allow a lock-sensitive schedule of the tree:
We can show that an AET has a lock-sensitive schedule if and only if there is
not more than one final acquisition of the same lock and the graph is acyclic.

4 A criterion for decidability

Our main statement now turned into the decidability of the existence of an
AET satisfying the above-mentioned conditions. We achieve this by identifying
certain structural properties of AETs, which are edge-labelled directed graphs,



and expressing the additional conditions in Monadic Second-Order Logic (MSO)
formulas. MSO formulas on graphs view the graphs as logical structures with
vertex set V and edge relations Ea ⊆ V × V for each label a. Quantification
is allowed over vertices v ∈ V as well as subsets V ′ ⊆ V . We can express the
relevant constraints, among those the configuration which has to be reached
and acyclicity, in this language. Decidability of MSO satisfiability on graphs
has been proven for certain cases. Courcelle and Engelfriet state such a result
for so-called HR-equational sets of graphs ([2], p. 408, theorem 5.80 (2)), which
consist of graphs that can be defined in a certain way by specific algebraic graph
operations. One possibility to create such a set of graphs is to specify a Hyperedge
Replacement Grammar (HRG) of graphs.

5 Hyperedge Replacement Grammars

HRGs can be seen as generalizations of context-free grammars of words; they
generate HR-equational sets of graphs. We use them also for making sure that
the operations given in an AET are consistent to the states and transitions of
the nLDPN under consideration.

The non-terminals of an HRG are hyperedges, i.e. edges connecting an ar-
bitrary number of vertices via destinguished connectors. The production rules
contain on their right-hand sides graphs with possibly inserted non-terminals
and destinguished external vertices matching the connectors on the left-hand
side of the rule. The rules specify how a terminal graph can be derived (in
finitely many steps, similarly to context-free grammars) from some initial graph
that contains non-terminals. In each derivation step, a non-terminal is replaced
by the right-hand side of a corresponding rule, where each external vertex in
turn is replaced by the vertex that is referenced by the corresponding connector
of the non-terminal.

We show an example HRG with one non-terminal called X having two connec-
tors called v and r that generates tree-like graphs with “return edges” connecting
the two branches as if the branching vertices were push operations in an AET,
out of the initial structure

X .

Its three production rules are (in a compact representation):

X

p

r ↪→
p r

X

p

r
X X

p

r



The rules express the termination of a branch, linear continuation, and branch-
ing, respectively. The external vertices are depicted without filling and annotated
with the name of the connector whose referenced vertex should replace it in a
derivation step. This way, each newly introduced vertex has a “previous vertex”
(p) and a “return vertex” (r), which always has to be specified in this example,
even if there is no branching.

The transition rules of a given nLDPN can be translated into production
rules like these, complemented by edge labels, vertices for the locks and other
things, in order to create corresponding AETs.

6 Overview and conclusion

To summarize, we show that the lock-sensitive reachability problem for nLDPNs
is decidable by reducing it to MSO satisfiability on HR-relational sets of graphs:
We transform the given nLDPN into an HRG generating the corresponding
AETs and we specify further conditions by MSO formulas. This establishes a
new decidability result for programs with unboundedly many locks in the shape
of a flexible and practical program model. We also hope to find decidability
theorems for otherwise extended program models using the same method in the
future.

References

1. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor Sets of Dynamic Pushdown
Networks with Tree-Regular Constraints. In: Proceedings of Computer Aided Veri-
fication (CAV 2009). Springer, Heidelberg (2009). LNCS 5643.

2. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge University Press (2012).


