
Transformations of CSPs to Regular CSPs

Sven Loe�er, Ke Liu, Petra Hofstedt

Brandenburg University of Technology Cottbus-Senftenberg, Germany

Abstract. With the development of constraint programming (CP), NP-
complete problems can be molded and solved in a powerful declarative way.
Until today, the most and with biggest success researched problems in constraint
programming are rostering, graph coloring and satis�ability (SAT) problems [4].

In an ideal declarative programming world, the program execution speed of
a constraint problem does not depend on the syntax of semantically equivalent
problem descriptions. However, as far as we know, this is not the reality for
general constraint problems.

Generally, there are several possible manners to model a given constraint
problem since the problem can be described from di�erent perspectives, there-
fore, two or more di�erent sets of constraints, which might consist of various
constraints, could be used to attack the same problem. The resulting constraint
problems can lead to very di�erent execution speed and execution behavior. The
main reason for this is that there are di�erent constraints with several propa-
gation algorithms, which can describe the same restrictions. Consequently, the
replacement of constraints by constraints of another type (in this case regular
constraints) and the combination of multiple constraints to a new constraint
can lead to a faster solution �nding process and a removement of undesirable
redundancy.

In our context, undesirable redundancy means the redundancy which occurs
through the use of similar or overlapping constraints which decrease the solu-
tion speed. In contrast to this, redundancy is often used in a targeted manner
to improve the solving speed of a constraint problem. We call this positive re-
dundancy. The mix of removing undesirable redundancy and adding positive
redundancy might also be a topic of future research, but until yet we consider
only the removement of undesirable redundancy.

Constraint Satisfaction Problems (CSP). The goal of our work is to im-
prove the solving speed of a Constraint Satisfaction Problem (CSP) which is
de�ned in the following way.

De�nition 1. CSP [1] A constraint satisfaction problem (CSP) is de�ned as a
3-tuple P = (X,D,C) with

X = {x1, x2, . . . , xn} is a set of variables,
D = {D1, D2, . . . , Dn} is a set of �nite domains where Di is the domain of xi,
C = {c1, c2, . . . , cm} is a set of primitive or global constraints containing between
one and all variables in X.

We transform several kinds of (global and sets of local) constraints into reg-
ular membership constraints and replace then the original constraints by the
created regular constraints in a CSP. For selected problems (like rostering prob-
lems) we increased the solution speed of CSPs, removed undesirable redundancy
and decreased the number of unnecessary backtracks by the replacement of some
or all constraints of a CSP with regular constraints followed by the combination
of such created multiple regular constraints into a new, more precise regular
constraint. The regular constraint and its propagation algorithm [6,5,2] provide
on the basis of this approach.

Regular transformations. According to our de�nition, a CSP P has a �xed
number n of variables X = {x1, . . . , xn} and the domains D = {D1, . . . , Dn} of
these variables are �nite, it follows that the potential solution space of the CSP
P is limited by l (see Eq.1).

l =

n∏
i=1

|Di|. (1)

A limited number of solutions can be enumerated by a regular language, and
based on the Myhill-Nerode theorem [3] every regular language has at least one
automaton which describes this language. A consequence of this is that for every
CSP P at least one regular CSP Preg exists which is declaratively equivalent to
P and contains only one regular constraint. We name such a CSP, which only
contains (one or more) regular constraints, a regular CSP.

If all solutions of a CSP P are known, then such a regular CSP Preg =
(X,D,Creg) can generated by the enumeration of all solutions of P . In practice,
however, this is not useful because we intend to use the regular CSP Preg to �nd
one or all solutions of P faster.

This is the reason, why we are interested in direct transformations of con-
straints into regular constraints. For some global constraints, among them count,
global cardinality constraint, and table constraints we de�ned corresponding ef-
�cient transformations. In addition to this we de�ned a transformation for sub-
CSPs (in particular binary ones) over sub-sets of variables X ′ ⊆ X and con-
straints C ′ ⊆ C of a CSP P = (X,D,C).

After the transformation into regular constraints it is possible to use the au-
tomaton methods intersection and minimize to combine di�erent automatons
to a new automaton and also di�erent constraints to one new constraint. By
doing this, redundancy between to constraints can be removed. This approach
allows it, especially, to combine constraints of original di�erent kinds together,
for example count with table. In our test cases we have experienced a signi�cant
reduction of the size of the necessary search tree and a great improvement of the
solving speed of CSPs.

Summary. We have presented a new approach for the optimization of general
CSPs using the regular constraint.

It has shown that a general CSP can be transformed into a regular CSP and
some special global constraints can be transformed directly e�ciently into reg-
ular constraints. By the use of automata intersection and minimization regular
constraints can be minimized. The evaluation of this approach by a rostering
example has shown a signi�cantly reduction of the size of the search tree and a
great improvement of execution time.

Our investigations support that our approach can be applied successfully
when considering sub-problems of a potentially large CSP P and, thus, subsets
of its variables X. The transformation of only sub-problems (instead of P com-
pletely) is, thus, much faster and, nevertheless, leads to a reduction of the number
of constraints (also the number of backtracks) and of undesirable redundancy
which, altogether, improves the solution speed.

Future work. The objectives of the future work are to �nd more direct trans-
formations for global constraints, investigating promising variable orderings to
optimize the size of the DFAs and, similarly, variable and value orderings for the
regular constraints. We wolud also research potential bene�ts from decomposi-
tion of automata, parallelization of the transformations and the solving process.
Finally, we want to �nd out about general (static) criteria to decide when to
apply the approach as well as extracting promising application areas in general.

References

1. Dechter, R.: Constraint processing. Elsevier Morgan Kaufmann (2003)
2. Hellsten, L., Pesant, G., van Beek, P.: A domain consistency algorithm for the stretch

constraint. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming
- CP 2004. Lecture Notes in Computer Science, vol. 3258, pp. 290�304. Springer
(2004)

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

4. Marriott, K.: Programming with Constraints - An Introduction. MIT Press, Cam-
bridge (1998)

5. Paltzer, N.: Regular Language Membership Constraint. Seminararbeit, Universität
des Saarlandes, Deutschland (2008)

6. Pesant, G.: A �ltering algorithm for the stretch constraint. In: Walsh, T. (ed.)
Principles and Practice of Constraint Programming - CP 2001. Lecture Notes in
Computer Science, vol. 2239, pp. 183�195. Springer (2001)

	Transformations of CSPs to Regular CSPs

