
DeLICM – Undoing SSA Transformations
for Polly

Michael Kruse

INRIA, France
michael.kruse@inria.fr

Abstract. The LLVM compiler and its intermediate representation are
SSA-based. Most of its optimizations assume virtual registers and there-
fore the framework tries to convert as many load/store chains to virtual
registers as possible. Unfortunately, this adds obstacles for polyhedral op-
timizers such as Polly. Virtual registers are 0-dimensional and as such of-
ten sequentialize otherwise parallel code. This is especially true for scalar
optimizations that move code around such as Loop-Invariant Code Mo-
tion and Partial Reduction/Common Subexpression Elimination. Polly’s
current approach is to analyze the code before these scalar optimizations
occur. We show that it is possible to undo the effects of these passes on
the polyhedral level, which executing Polly later in LLVM pipeline where
more SCoPs can be detected, without the additional scalar dependencies.

Keywords: Static Single Assignment, Polyhedral Compilation, Loop-Invariant
Code Motion, Partial Redundancy Elimnation, LLVM, Polly


