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Abstract. Increasing data movement costs motivate the integration of
advanced loop optimization frameworks in the standard flow (-O3) of
production compilers. While high-level loop optimizers are effective when
directly applied on unmodified hand-crafted code, they have close to zero
impact when integrated in a standard compilation flow. Scalar dependen-
cies (dependencies carried over a single memory location) are the main
obstacle preventing effective optimization. We present DeLICM, a set
of transformations which, backed by a polyhedral value analysis, elim-
inate problematic scalar dependences by 1) relocating scalar memory
references to unused array locations and by 2) forwarding computations
that otherwise cause scalar dependences. Our experiments show that
DeLICM effectively eliminates complex dependences introduced by hu-
man programmers, compiler-internal canonicalization passes, optimizing
code generators, or arising as inlining artifacts – all without the need
for any additional memory allocation. As a result, advanced loop opti-
mizations can be applied without being disturbed by, or even benefiting
from, canonicalizations essential for optimizing modern C++ code.

1 Introduction

Advanced high-level loop optimizations, often using polyhedral program mod-
els [1], have been shown to effectively improve data locality for computational
codes from image processing [2], over iterated stencil [3], lattice-boltzmann
computations [4] to sparse-matrices [5] and even provide some of the leading
automatic GPU code generation approaches [6, 7].

While many polyhedral optimizers have shown successful in research, their
production use is still not common because none of the established frame-
works is enabled by default in a standard optimization setting (e.g., -O3). With
GCC/graphite [8], IBM/XL-C [9], and LLVM/Polly [10] there are three poly-
hedral optimizers that work directly within a production C/C++/FORTRAN
compiler and are shipped to millions of users. While all provide good perfor-
mance on various benchmarks, one of the last roadblocks that prevents running
optimizers such as LLVM/Polly by default is the fact that Polly is not well
integrated into the standard compilation flow of LLVM, but instead runs as
pre-processing pass before the standard -O3 sequence.



for (int i = 0; i < N; i += 1) {

T: C[i] = 0;

for (int k = 0; k < K; k += 1)

S: C[i] += A[i] * B[k];

}

Listing 1: Example: sums-of-products.

double a;

for (int i = 0; i < N; i += 1) {

T: C[i] = 0; a = A[i];

for (int k = 0; k < K; k += 1)

S: C[i] += a * B[k];

}

Listing 2: Sums-of-products after hoisting the load of A[i].

While running early in the pass pipeline makes it easy to detect specially
hand-crafted loop kernels, it can also cause random performance changes and
negatively impact inlining decisions. To make Polly effective early in the pass
pipeline an additional set of canonicalization passes that prepare the program
code for the loop analysis have to be run on all input that should potentially
be optimized by Polly, which introduces random IR changes and consequently
performance noise that is hard or even impossible to control. At the same time,
applying loop optimizations – which often increase code size – early means that
no inlining has yet been performed and consequently smaller loop regions are
exposed or future inlining is prevented. Hence, running Polly early works only
in controlled benchmarking situations, but is not something that can be shipped
to millions of users.

The right position for a polyhedral optimizer is late in the pass pipeline, after
all inlining and canonicalization has taken place. In this position, the IR can be
analyzed without having to modify the IR, such that any IR changes finally intro-
duced are intentional and known-beneficial according to the performance models
of the polyhedral loop optimizer and that the inlining passes have eliminated the
C++ abstraction overhead. However, when running late in the pass pipeline –
after inlining and canonicalization – various simplifications are performed that
introduce scalar dependencies and prevent most loop transformation (section 5).

While most research loop optimizers [11, 6] expect input code to work mostly
on arrays, in practice many programs work – at least in parts – on temporary
scalars. These scalars are common after inlining and canonicalisation but often
also arise for various other reasons (section 1.1).

For instance, listing 1 works entirely on arrays and is easier to optimize than
listings 2 to 4 due to not having scalar dependencies. This is because of the
temporaries a and c. Although the data flow dependencies are the same, new
false dependencies are introduced that prevent the scalars a or c from being



double c;

for (int i = 0; i < N; i += 1) {

T: c = 0;

for (int k = 0; k < K; k += 1)

S: c += A[i] * B[k];

U: C[i] = c;

}

Listing 3: Sums-of-products after promotion of C[i] to a scalar.

double c;

for (int i = 0; i < N; i += 1) {

T: c = 0;

for (int k = 0; k < K; k += 1)

S: C[i] = (c += A[i] * B[k]);

}

Listing 4: Sum-of-products after partial promotion of C[i] to a per-iteration
temporary.

overwritten before all statements using that value have been executed. For list-
ing 3 this means that the dynamic statement instance T (i), statement T at loop
iteration i, cannot execute before the previous iteration i − 1 has finished. In
this case, statement instance U(i− 1) must execute before T (i), represented by
the (anti-)dependencies

∀i ∈ { 1, . . . , N − 1 } : U(i− 1)→ T (i) .

We call dependencies that are induced by a scalar memory location such as
a or c, scalar dependencies. Such scalar dependencies effectively serialize the
code into the order it is written, inhibiting or complicating any advanced loop
optimizations including tiling, strip-mining, and parallelization. Certain specific
optimizations can work well with scalar dependencies. A vectorizer can for exam-
ple introduce multiple independent instances of the scalars, one for each SIMD
lane. An automatic parallelizer can privatize the temporaries per thread. How-
ever, general purpose loop scheduling algorithms such as Feautrier [12, 13] or
Pluto [11] do not take privatization opportunities into account. In case transfor-
mations such as loop distribution or reversal should be applied, it is not even
possible to privatize variables to avoid scalar dependencies. Hence, to allow maxi-
mal scheduling freedom it is desirable to model programs with a minimal number
of scalar dependencies or none at all (listing 1). As the semantics of listings 1
to 4 are identical any good compiler should be able to compile them to the same
optimized program, after all loop optimizations have been applied.

In this article we present a novel memory dependence removal approach that
reduces a polyhedral’s compiler sensitivity on the shape and style of the input
code and enables effective high-level loop optimizations as part of a standard
optimization pipeline.



Our contributions are:

– A polyhedral value analysis that provides at statement instance granularity
information about the liveness and the source statement of individual data
values.

– Greedy Coalescing: Maps promoted scalars to array elements that are unused
to handle cases such as listings 3 and 4. (section 2)

– Operand Tree Forwarding: Move instruction and memory reads to the state-
ments where they are used to handles cases such as listing 2. (section 3)

– An evaluation showing that advanced loop optimizations are effective late in
the pass pipeline. (section 5)

Our approach has been implemented in LLVM/Polly.

1.1 Sources of Scalar Dependencies

Scalar memory dependencies arise for several reasons:

Single Static Assignment (SSA) based intermediate representations (IR)
used in modern compilers cause memory often to be promoted to virtual
registers, like the scalar temporaries a or c from the examples. Values that
are defined in conditional statements are forwarded through ϕ-nodes. Both
are commonly modeled as scalar accesses in polyhedral optimizers.

Loop-Invariant Code Motion moves instructions that evaluate to the same
value in every loop iteration, in front of the loop, and instructions whose
result is only used after the loop, after the loop. In LLVM, it is performed
by two passes: LICM and GVN. The former also promotes memory to virtual
registers while being in the loop, which transforms listing 1 into listing 3. A
part of GVN for partial redundancy elimination (PRE) pass can transform
listing 1 into listing 2 or listing 4.

C++ abstraction layers allow higher-level concepts to be represented as ob-
jects where components are distributed over different functions. For instance,
a class can implement a matrix subscript operation by overloading the call
operator. When invoked the operator will return the content at the indexed
matrix location as a scalar. To optimize across such abstraction layers, it is
essential for inlining to have taken place. The heuristics of LLVM’s inliner
assume that some canonicalization, including SSA-conversion, have taken
place and that LICM has been performed to reduce code size and potentially
eliminate side-effect free loops. Hence, the inlining required to optimize C++
code will unavoidably introduce scalar dependences.

Manually applied optimizations Programmers may write code in the style
of listing 3 to not rely on the compiler to perform LICM because compilers
may not reliably perform it themselves. For instance, possible aliasing be-
tween array C and A may prevent this transformation. As even C++17 does
not yet provide annotations (e.g., restrict) to declare absence of aliasing,
such optimizations are potentially necessary.



1 Knowledge = computeKnowledge();

2 for (w : Writes) {

3 if (!eligibleForMapping(w))

4 continue;

5 t = getAccessRelation(w);

6 Workqueue = getInputScalars(w);

7 while (!Workqueue.empty()) {

8 s = Workqueue.pop();

9 if (!eligibleForBeingMapped(s, t))

10 continue

11 CandidateKnowledge = computeKnowledge(s);

12 Proposal = mapKnowledge(CandidateKnowledge, t);

13 if (isConflicting(Knowledge, Proposal))

14 continue;

15 for (a : ReadsTo(s) ∪ WritesTo(s))

16 a.setAccessRelation(Target);

17 Knowledge = Knowledge ∪ Proposal;

18 for (w : WritesTo(s))

19 Workqueue = Workqueue ∪ getInputScalars(s);

20 }

21 }

Listing 5: Greedy scalar mapping algorithm.

Code generators which are not not meant to generate output read by humans,
might be inclined to generated some form of pre-optimized code. TensorFlow
XLA for instance, passes code to LLVM with pre-promoted variables in its
matrix multiplication kernels [14].

2 Value Coalescing

In this section we present the idea of reusing an array element to store a scalar.

2.1 The Greedy Scalar Mapping Algorithm

After we know the rules when two variables can be coalesced, we need an algo-
rithm that selects the memory to be coalesced. The algorithm’s pseudocode is
shown in listing 5. It maps the first variable it sees without backtracking after a
possible mapping is found, i.e., a greedy algorithm. In the following paragraphs
we explain the algorithm in detail.

The algorithm begins by collection data about the system, which we call
“Knowledge” (line 1). It includes information about each memory location ref-
erenced in this system, scalars as well as array elements:

– All writes to the location.
• The reaching definition derived from the writes.



• The value written by the write is added to the known content the location
during the reaching definition’s zone.

– All reads from the location.
• The lifetime zones derived from the reads and the reaching definitions.
• When using SSA, the read result itself is also an identifiable value which

is added to the known content of the definition zone.
– The unused locations, which is the zone when a location is not alive. An

alternative method to compute this are the zone from the last read of a
reaching definition to the the of the reaching definition’s zone.

All of these can be represented as relational polyhedra with dimensions tagged
as belonging to an array element, timepoint, statement or value. Every write
potentially opens up an unused zone right before it. Some targets might be
unsuitable, for instance because the store is not in a loop or the span of elements
written to is only a single element (like in ??). Such targets are skipped (lines 3–
4). For a given write, we collect two properties: first, the target array element
for each statement instance that is overwritten and therefore causes an unused
zone before it (Target on line 5); second, the list of possible scalars that might
be mapped to it (getInputScalars at line 6). The best candidate for mapping
is the value that is stored by the write because it would effectively move the
write to an earlier point where the value is written (like U(i) in ??). These
candidates are used to initialize a queue, with the best candidate coming out
first. Prioritized candidates are those that lead to a load of the map target.

Let s be the next candidate scalar (line 8). Similar to checking the eligibility
of w being a mapping target, we check whether s is eligible to be mapped to t

(Lines 9–10). Reasons for not being a viable scalar to be mapped include being
larger than the target location, being defined before the SCoP or used after it
(because these accesses cannot be changed). The exact requirements depends on
the intermediate representation used by the implementation. Once s passes the
basic checks, we compute the additional knowledge for it in case it is mapped to
t. It consists of the lifetime for the previously unused array elements of t and
the known content of s, which then becomes the known content of t. We call
this supplemental knowledge the Proposal (line 11).

The proposal is then compared with the existing knowledge to see whether
there are conflicts (line 13). For two knowledges A and B to be compatible (non-
conflicting), the must meet following conditions for every memory location:

– The lifetime zones of A and B must be disjoint, except when their share the
same known content.

– Writes in A cannot write into B’s lifetime zone, except if the the written
value is already B’s known content.

– Writes in B cannot write into A’s lifetime zone, except if the the written
value is already A’s known content.

A conflict is a violation against one of these rules. They ensure that the semantics
of the program remain the same after carrying out the mapping of the proposal.
If a conflict is found, the proposal is rejected and the next value from the queue is



double a, a_S;

for (int i = 0; i < N; i += 1) {

T: C[i] = 0; a = A[i];

for (int k = 0; k < K; k += 1)

S: a_S = A[i];

C[i] += a_S * B[k];

}

Listing 6: Operand tree forwarding applied on sum-of-products (listing 2)

tried. If there is no conflict, then the proposal is applied. All uses of s are changed
to uses of t (line 16). The proposal is used to update the SCoP’s knowledge
(line 17) by uniting the lifetimes and known content. Since writes to s have
become writes to t, an new unused zone ends at each write, to which which
variables can be mapped to. As with the original write (line 6), we add possible
mapping candidates to the work queue (line 19). The rationale is that lifetimes
interesting for mapping are adjacent: When the lifetime of one variable ends,
it is because it computes a new value that might be eligible for mapping. The
algorithm runs until no more variable can be mapped to t and then continues
with the next write, until all writes have been processed (line 2).

3 Operand Tree Forwarding

The mapping algorithm is only able to remove scalar dependencies if there is
an unused array element, or one that stores the same value anyway. For a in
listing 2 this does not apply. Fortunately, we can just repeat the computation
of a in every statement it is used in. The result of such a forwarding is shown
in listing 6. Thereafter the variable a becomes dead code. We call this operand
tree forwarding because for a use of a scalar in a statement, it copies the entire
operand tree for the scalar in order to avoid having a scalar dependency for any
of the operands.

3.1 The Operand Tree Forwarding Algorithm

We consider two kinds of operations that can forwarded to another location. The
first kind are operations without side-effects and whose’ result depend only on
its operands. In LLVM, these are called speculatable instructions. The second
kind is a read from memory. These can be copied if the memory location has the
same content at the position of the original access and the position it is copied
to.

Instead of determining whether the memory location is unchanged, we can
reuse the knowledge we already need to obtain for greedy mapping. Given the
known content information at the timepoint of the target of the forwarding, any
value required by the target statement can be reloaded. The two advantages are



1 bool canForwardTree(

2 Stmt Target, Operation s, Knowledge K) {

3 e = K.findElementWithSameContent(s, Target);

4 if (e)

5 return true;

6 if (s is speculatable)

7 return false;

8 for (op : operands(s))

9 if (!canForwardTree(Target, s, K))

10 return false;

11 return true;

12 }

Listing 7: Determine whether an operand tree is forwardable.

1 void doForwardTree(

2 Stmt Target, Operation s, Knowledge K) {

3 e = K.findElementWithSameContent(s, Target);

4 if (e) {

5 Target.add(new Load(e));

6 return;

7 }

8 Target.add(s);

9 for (op : operands(s)) {

10 doForwardTree(Target, s, K);

11 }

12 }

Listing 8: Copy an operand tree to TargetStmt.

that the reload does not need to happen from the same location as the original
load, and the reloaded value does not even need to be a result of a load.

Listing 7 shows the pseudocode that determines whether an operand tree
rooted in s whose result is used in another statement, can be forwarded to that
target statement. If canForwardTree returns a positive result, the procedure
doForwardTree in listing 8 can be called to carry-out the forwarding.

Both procedures are recursive functions on the operand tree’s operation.
They are correct on DAGs as well, but lead to duplicated subtrees.
doForwardTree basically repeats the traversal of canForwardTree,
but can assume that every operation can be forwarded. The method
findElementWithSameContent (line 3) looks for an array element for each
statement instance of the target that contains the result of operation s. If it
finds such locations, the operand tree does not need to be copied but its result
can be reload from these locations. The new load is added to the list of
operations executed by the target statement (line 5 of doForwardTree). If the
operation is speculatable (line 6 in canForwardTree), we need to also check



whether its operands are forwardable (line 9) since copying the operation to
the target will require its operands to be available as well. In doForwardTree,
the speculatable operation is added to the target’s operations (line 8) and a
recursive call on its operands ensures that the operands values are as well
available in the target statement (line 10).

4 Implementation

Both transformations, value mapping and operand tree forwarding, have been
implemented in Polly [10]. Polly inserts itself into the LLVM pass pipeline de-
pending on the -polly-position option, as shown in fig. 1, which in the fol-
lowing we shorten to early and late.

Fig. 1. Position of the Polly polyhedral optimizer in the LLVM pass pipeline.

LLVM’s early mid-end is (also) meant to canonicalizethe input IR: to find
a common representation for inputs that have the same semantics. Transfor-
mations should never make a follow-up analyses worse, e.g., not introduce irre-
ducible loops or remove pointer aliasing information. Loop-Invariant Code Mo-
tion and Partial Redundancy Elimination is part of the IR’s “normal form”. Low-
level and most target-specific transformations take place later in the pipeline.

Because scalar dependencies are destructive to polyhedral optimization,
Polly’s default configuration used to be early. Because Polly depends on
LLVM’s loop detection and its ScalarEvolution analysis, a selected set of passes
are added before Polly. For functions that do not contain any loops that Polly
could optimize, these are redundant because these passes run anyway in
LLVM’s own canonicalization phase.

In the late position, Polly is added after LLVM’s own canonicalization. It first
runs the operand tree forwarding followed by the greedy mapping algorithm. A
simplification pass cleans up now unnecessary accesses and statements. This has
many advantages:

– The IR is more canonicalized;



– The inliner has run; C++ overloaded operators are normally inlined. Hence,
inlining allows Polly to see not just opaque function calls, but to optimize
through C++ abstraction layers.

– Shared canonicalization passes do not run redundantly.
– No modification of the IR if Polly does not optimize anything. Even small

changes can have effects on the output produced, e.g. because the instruc-
tion selection produces a different instruction. This can have unwanted and
difficult to avoid effects on performance (positive as well as negative).

Polly’s generated IR does not conform to LLVM’s IR normal-form, so the LLVM
canonicalization passes run again if Polly produced some new IR in the function.
The pipeline is tuned for the current pass order (e.g. the inliner’s heuristics) and
used in production, therefore adjusting LLVM’s canonicalization passes for the
needs of Polly is not an option.

4.1 IR-Specific Algorithm Details

Because LLVM-IR is an SSA-based language, the result of operations can be
identified by the operations itself. Moreover, the value can be uniquely identified
within a SCoP’s execution by the operation and the statement instance it is
computed at. We use this for known content analysis. For instance, the value a

produced by statement T (i) in listing 2 is represented by [T (i)→ a]. Because a

is loaded from the array A, the content of A[i] at the time of the execution of
T (i) can also be identified as [T (i)→ a].

LLVM-IR also has ϕ-nodes that represent different values depending on the
control flow. Because the control flow is statically known within a SCoP, we can
replace ϕ-nodes by the value they stand for. The exception is if the φ recursively
refers to itself, in this case it is treated as a normal SSA value.

In addition to the SSA-value for a ϕ, Polly models a ϕ with an additional
memory location. Predecessor statements write their value to that location such
it can be read from there by the statement containing the ϕ. Listing 5 can map
SSA- and ϕ-scalars alike. The difference is that ϕ have multiple writes, but just
one read.

5 Evaluation

The code is optimized for and run on an Intel Xeon E5-2667 v3 (Haswell ar-
chitecture) running at 3.20 GHz. Its cache sizes are 32 KB (L1i), 32 KB (L1d),
256 KB (L2) and 20 MB (L3). The machine has 8 cores and Hyperthreading
enabled, i.e., 16 logical threads, but we only evaluate single-thread performance.
The hardware details are mostly relevant for the performance tests, but some
early LLVM passes make use of target-specific information as well. Hence, hard-
ware details can influence which transformations are carried out. DeLICM itself
does not make use of hardware architecture information. The compiler used for
all evaluations is based on clang 6.0.0 (SVN revision 312874) using the optimiza-
tion level -O3 -march=native -ffast-math for all tests. All evaluation is done



on Polybench/C 4.2.1 beta [15]. Polybench is a collection of 30 benchmarks with
kernels typical in scientific computing. Polybench/C benchmarks are written
with polyhedral source-to-source compilers in mind with the consequence that it
avoids scalar variables since they are known to not work well in the polyhedral
model.

Instead, we let the LLVM scalar optimizers (mostly LICM and GVN) in-
troduce the scalar dependencies by running Polly late in LLVM’s pass pipeline.
Any dependency introduced by these are, by definition, avoidable. This gives
the opportunity to evaluate what percentage of scalar dependencies DeLICM
can remove, and how well Polly can handle LLVM’s more canonicalized IR left
by more passes.

Unfortunately, the combination of the LLVM passes LoopRotate and
JumpThreading can destroy canonicalized loops. LoopRotate inserts a special
path if a loop body is not executed at all, including nested loops.
JumpThreading makes that path skip the loop exit check. This results in the
outer loop having two latches, which ScalarEvolution cannot analyze. We
modified the Polybench source to avoid this problem, which is a shortcoming of
LLVM’s canonicalization and not in the realm of Polly. We plan to write and
upstream a fix to LLVM.

In order to allow LLVM’s scalar optimizers to work better, we enable
Polybench’s use of the C99 restrict keyword (-DPOLYBENCH_USE_RESTRICT).
This tells the compiler that arrays do not alias each other which allows for
more code movement. For all tests, we use Polybench’s large dataset
(-DEXTRALARGE_DATASET), which sets the problem size such that the
computation requires about 120MB of memory.

To show the effect of C++ and inlining, we translated four of the benchmarks
to C++ using uBLAS [16]: covariance, correlation, gemm and 2mm. The former
two use the original algorithm but instead of an array, they use uBLAS’s vector
and matrix types. The latter two use uBLAS own implementation of the matrix-
matrix product. uBLAS is a header-only library with extensive use of expression
templates and has no target-specific optimizations.

5.1 Performance Evaluation

The runtime speedups are shown in fig. 2 on a logarithmic scale. The speedups
are relative to the execution time of the benchmark compiled with clang -O3
without Polly. Each execution time is the median of 5 runs. Each run of Poly-
bench takes in the range of 1 hour to complete. The benchmarks gemver, symm,
mvt, cholesky, durbin, gramschmidt, lu, ludcmp, deriche, floyd-warshall, nussi-
nov, heat-3d and jacobi-2d are not shown because neither the pipeline position
nor DeLICM have a significant effect on their execution speed. This does not
mean that DeLICM was failed, but that the optimization chosen by Polly does
not change the performance.

Generally, executing Polly at the late position causes the performance to
fall back to the performance without Polly. Most of the time this is because
Polly does not even generate any code because of the scalar dependencies. Not
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Fig. 2. Speedups relative to clang without Polly.

in all cases there is a performance gain, we also get slowdowns. The choice of
optimization is not the topic of this work, but to enable such optimizations.
We gain the highest speed-ups with the matrix-multiplication family (gemm,
2mm, 3mm) due to a special optimization path for it. Applying DeLICM at
the beginning of the LLVM pipeline, without LICM and GVN, has little effect.
Running it at the late setting almost always restores the original performance.
The only benchmark where an original performance-gain could not be recovered
is doitgen. In trisolv and adi some transformation could be applied, but which
cause a regression

For some benchmarks, we even got a (higher) speed-up where there was none
before: trmm and fdtd-2d. Early in the pipeline, the C++ benchmarks could not
be optimized at all, but late in the pipeline can get optimized just as well. Co-
variance and correlation do not reach the performance of the original Polybench
programs because of the aforementioned LoopRotation/PRE interaction. The
uBLAS matrix-multiplication benchmarks are not vectorized by clang without
Polly , which leads to an even higher speedup when it is vectorized by Polly.

6 Related Work

We can categorize the work in this area into two categories: memory duplication
and ignoring non-flow dependencies.

The first category provides additional memory such that there are fewer con-
flicts between unrelated computations. Taken to the most extreme, every state-
ment instance writes to its dedicated memory [17]. Like in SSA, every element is
only written once and therefore this mode is also called Dynamic Single Assign-
ment (DSA) [18]. This eliminates all false dependencies at the cost of greatly
increasing of the memory requirement. Refinements of this technique only du-
plicate a private copy per thread [19]. This can solve the problem for parallelism



but does not enable inner-thread scheduling such as tiling. [20] proposes priva-
tization on demand, when an optimization finds restricting dependencies. There
is the possibility to contract array space after scheduling [21–26]. However, the
re-scheduled program may inherently require more memory than the source pro-
gram, especially if the scheduler is unaware that its decision may increase the
memory footprint.

The second strategy is to remove non-flow dependencies when it can be shown
they are not important to the correctness of the transformed program. Which de-
pendencies can be removed depends on the scheduling transformation to be per-
formed. A technique called variable liberalization [27] allows loop-fusion. Tiling
and parallelism can be recovered using live-range reordering [28, 29].

Both come with the disadvantage that they are only compatible for the spe-
cific optimization they were designed for. In case of live-range reordering, the
PluTo algorithm is still used with the scalar dependencies to determine bands,
sets of perfectly nested loops. Live-ranges are then used to determine whether
these bands are tileable or even parallel. They are if the life ranges are restricted
to the band’s body. This means that with this algorithm Listing 1 has a tileable
band of two loops while for listings 2 to 4 the two loops that cannot be combined
into a band. Still, the outer loops would be considered parallel .

A conflict set as presented in [25, 26] can also be useful to determine whether
a scalar is conflicting with an array (listing 5 line 13). For the purpose of DeLICM
we additionally need to analyze the stored content and one participant of the
conflict set is always a scalar such that a full-array conflict set is not needed.

7 Conclusion

This paper presents two algorithms to reduce the number of scalar dependen-
cies that are typically the result of scalar mid-end optimizations such as Loop-
Invariant Code Motion, but also appear in hand-written source code. We use
“DeLICM” as an umbrella name for both algorithms. The first algorithm han-
dles the more complicated case of register promotion, where an array element
is represented as scalars during a loop execution. The approach is to map the
scalars back to the array element they were promoted from. Because the infor-
mation which scalars were, if at all, promoted from which memory, and finding
an optimal solution like register allocation would be NP-complete, we employ a
greedy strategy which works well in practice. The second algorithm implements
operand tree forwarding. It copies side-effect-free operations to the statements
their result is needed or reloads values from array elements that are known to
contain the sought value. We implemented both algorithms in Polly, a polyhe-
dral optimizer for the LLVM intermediate representation. The experiments have
shown that we can remove almost all avoidable scalar dependencies. Thanks to
this effort, it also becomes worthwhile to execute Polly after LLVM’s IR nor-
malization and inlining, allowing, for instance, polyhedral optimization of C++
code.



References

1. Verdoolaege, S.: Presburger formulas and polyhedral compilation. (2016)
2. Mullapudi, R.T., Vasista, V., Bondhugula, U.: Polymage: Automatic optimization

for image processing pipelines. In: ACM SIGPLAN Notices. Volume 50., ACM
(2015) 429–443

3. Bandishti, V., Pananilath, I., Bondhugula, U.: Tiling stencil computations to max-
imize parallelism. In: High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, IEEE (2012) 1–11

4. Pananilath, I., Acharya, A., Vasista, V., Bondhugula, U.: An optimizing code
generator for a class of lattice-boltzmann computations. ACM Transactions on
Architecture and Code Optimization (TACO) 12(2) (2015) 14

5. Venkat, A., Hall, M., Strout, M.: Loop and data transformations for sparse matrix
code. In: ACM SIGPLAN Notices. Volume 50., ACM (2015) 521–532

6. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gomez, J., Tenllado, C.,
Catthoor, F.: Polyhedral parallel code generation for cuda. ACM Transactions on
Architecture and Code Optimization (TACO) 9(4) (2013) 54

7. Baskaran, M., Ramanujam, J., Sadayappan, P.: Automatic c-to-cuda code gener-
ation for affine programs. In: Compiler Construction, Springer (2010) 244–263

8. Trifunovic, K., Cohen, A., Edelsohn, D., Li, F., Grosser, T., Jagasia, H., Ladelsky,
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