
Security Through Safety

Benedikt Nordhoff

Westfälische Wilhelms-Universität
Münster, Germany

In the first section, we will define the program model and security property
we are aiming at. The second section contains a characterization of critical exe-
cutions which must exist for the security property to be violated and has been
formalized in the interactive theorem prover Isabelle/HOL. This is then used in
the last section to construct a safety analysis that asserts the security property.

1 Security Property

For the definition of our program model let Var be a finite set of variables and
Val be an arbitrary set of values. The states on which our programs operate are
maps from variables to values Σ = Var→ Val. We assume the confidential input
is part of the initial state as values of a set H ⊆ Var of initially high variables.
We call the remainder L = Var \ H initially low variables. For an arbitrary
set X ⊆ Var of variables and two states σ, σ′ ∈ Σ we denote by σ =X σ′ the
pointwise equality of σ and σ′ for all x ∈ X and in the special case that X = L
we call the states σ and σ′ low equal. We use control flow graphs for our program
model.

Definition 1 (Program model). A control flow graph is a tuple (N,E, e, r, J.K)
where N is a finite set program locations, J.K :N ×Σ → N ×Σ is the determin-
istic semantics function, E ⊆ N × N , is a safe control flow abstraction i.e.
∀n, n′. ∃σ, σ′. Jn, σK = (n′, σ′)⇒ (n, n′) ∈ E. e, r ∈ N are the initial respectively
final location and we require, that N × {r} ⊆ E∗, ∀n. (r, n) ∈ E ⇒ n = r and
∀σ.Jr, σK = (r, σ).

For a location state tuple x ∈ N ×Σ, we denote by xl (respectively xs) the
projection to the program location (respectively the state). We assume that we
have two auxiliary functions use :N → 2Var, which models the sets of variables
used, and def :N → 2Var, which model the sets of variables defined by an instruc-
tion in the canonical way. That is def(n) ⊇ {v ∈ Var | ∃σ. σ(v) 6= Jn, σKs(v)}
and use(n) ⊆ Var, such that for all σ, σ′ that satisfy σ =use(n) σ′ it holds
Jn, σKl = Jn, σ′Kl and Jn, σKs =def(n) Jn, σ′Ks.

Definition 2 (Execution). A formal execution is a path π = (πi)0≤i ∈ Nω

where π0 = e and for all 0 < i it holds that (πi−1, πi) ∈ E. It is called feasible
from some state σ0 if ∀i. πi = Jπ0, σ0Kil and in this case (Jπ0, σ0Kis)0≤i is called the
corresponding state sequence. An execution is called terminating if there exists
an index k such that πk = r.



Definition 3 (Attacker). An attacker is modeled as a uniquely defined relation
(partial function) of observables obs ⊆ N × (Σ → Val) such that for all (n, f) ∈
obs the value of f only depends upon the values of the variables in use(n), that is:
∀σ, σ′ ∈ Σ. σ =use(n) σ

′ ⇒ f(σ) = f(σ′). The observation made by the attacker
from an initial state σ0 is defined as follows. Let π = π0π1 . . . be the execution
corresponding to σ0, (σi)1≤i be the corresponding states and (ij)1≤j<l for l ∈
N ∪ {∞} be the maximal increasing family of indices such that πij ∈ dom(obs)
for all j. Then the sequence obs(σ0) := (obs(πij )(σij ))1≤j<l is the observation
made from σ0 by the attacker obs.

Definition 4 (Security). A program is called αLobs-secure if for all pairs of
low equivalent states σ =L σ′, for which the corresponding maximal executions
terminate, it holds that obs(σ) = obs(σ′).

A program is called βLobs-secure if for all pairs of low equivalent states σ =L

σ′, it holds that obs(σ) ≤ obs(σ′) or obs(σ′) ≤ obs(σ). Here ≤ is the prefix order
on sequences.

Note that α+ β security corresponds to indistinguishable security [2]. We don’t
require that non-terminating executions produce the same observation, as this
would require the analysis to prove termination of all loops influenced by high
data.

2 Characterization

Let Π denote the set of infinite paths in E. That is Π = {(πi)0≤i | ∀ 0 <
i. (πi−1, πi) ∈ E}. Let pd−→⊆ N × N be the post dominance relation, that is
n pd−→ m iff ∀(πi)0≤i ∈ Π, k. π0 = m ∧ πk = r⇒ ∃i ≤ k. πi = n. As we assumed,
that r can be reached from all locations and doesn’t reach any other locations,
the post dominance relation pd−→ is the transitive reflexive closure of the post
dominance tree rooted in r and the immediate post dominator ipd(m) is well
defined for all m ∈ N \ {r} as the unique location n 6= m such that n pd−→ m and
∀n′. n′ 6= m ∧ n′ pd−→ m⇒ n′ pd−→ n.

We define control dependencies in the style of Xin & Zhang [3] based on re-
gions which correspond to a path from a branching point up to the corresponding
immediate post dominator and use the standard definition of data dependency.
For a path π ∈ Π the control dependency relation cdπ−−→ ⊆ N × N is defined as
follows i cdπ−−→ k iff i < k ∧ πk 6= r ∧ ∀j. i ≤ j ≤ k ⇒ πj 6= ipd(πi). With this
we can define the control slice of index k in π ∈ Π as csπk = (πij )0≤j≤l where
(ij)0≤j≤l is the maximal increasing sequence of indices such that il = k and
for all 0 ≤ j < j′ ≤ l ij

cdπ−−→ ij′ . The control slice is useful to identify occur-
rences of the same location in different executions as it has the useful property:
∀i, i′, j, j′ ∈ N, π, π′ ∈ Π. csπi = csπ

′

i′ 6= r ∧ csπj = csπ
′

j′ ∧ i < j ⇒ i′ < j′.
For a path π ∈ Π and variable v ∈ Var the data dependency relation ddπ,v−−−→

⊆ N × N is defined by i ddπ,v−−−→ k iff i < k ∧ v ∈ def(πi) ∩ use(πk) ∧ ∀j ∈
[i+ 1, k − 1]. v /∈ def(πj).



We use the following characterization to identify critical executions. For a
state σ let πσ = (πσi )0≤i denote the corresponding path with state sequence
(σi)0≤i. We define the the set of conflict pairs cp ⊆ (Σ × N)2 as the smallest
relation closed under rules defined in equations (1) – (4).

σ =L σ
′ ∧ csπ

σ

i = csπ
σ′

i′ ∧
h ∈ use(πσi ) ∧ σi(h) 6= σ′i′(h) ∧
∀j < i. h /∈ def(πσj ) ∧
∀j′ < i′. h /∈ def(πσ

′

j′ )

(σ, i) cp (σ′, i′)
(1)

(σ, j) cp (σ′, j′) ∧ csπ
σ

i = csπ
σ′

i′ ∧
j ddπ,v−−−→ i ∧ j′ ddπ′,v−−−−→ i′ ∧

σi(v) 6= σ′i′(v)

(σ, i) cp (σ′, i′)
(2)

(σ, j) cp (σ′, j′) ∧ csπ
σ

i = csπ
σ′

i′ ∧
j cdπ−−→ k ∧ k ddπ,v−−−→ i ∧

πσj+1 6= πσ
′

j′+1 ∧ σi(v) 6= σ′i′(v) ∧
∀l′ ∈ [inf{ι′|j′ < ι′ ∧ ∃ι. csπ

σ

ι = csπ
σ′

ι′ }, i′ − 1]. v /∈ def(πσ
′

l′ )

(σ, i) cp (σ′, i′)
(3)

(σ′, i′) cp (σ, i)

(σ, i) cp (σ′, i′)
(4)

We obtain the property, that, if the executions for two low equal states reach
the same control slice but read different values for some variable, then they
create a conflicting pair.

Lemma 1. σ =L σ
′ ∧ csπ

σ

i = csπ
σ′

i′ ∧ σi 6=use(πσi )
σ′i′ ⇒ (σ, i) cp (σ′, i′)

Based on this we define observable conflict pairs as those, that either both
reached an observable node or where one has but the other can not reach an
observable node. We define the the set of observable conflict pairs cop ⊆ (Σ×N)2

as the smallest set closed under the following rules:

(σ, i) cp (σ′, i′) ∧ πσi ∈ dom(obs)

(σ, i) cop (σ′, i′)
(5)

(σ, j) cp (σ′, j′) ∧ j cdπ−−→ i ∧ πσj+1 6= πσ
′

j′+1 ∧ πσi ∈ dom(obs)

(σ, i) cop (σ′, j′)
(6)

Theorem 1. If there do not exist any states σ, σ′ and indices i, i′ such that
σ =L σ

′ and (σ, i) cop (σ′, i′) then the program is αLobs and βLobs secure.



3 Analysis

Inspecting equations (1) – (6) we can obtain a sound approximation for individ-
ual potentially critical executions. Equation (1) is handled by the initialization
Iπ = {i ∈ N|∃h ∈ H ∩ use(πi). ∀j < i. h /∈ def(πj)}. To handle the execu-
tions from equation (2) we can use the previously defined data dependencies.
In equation (3) the execution πσ is captured by control dependencies plus data
dependencies and to capture execution πσ

′
we use data control dependencies

defined in equation (7) below.

i dcdπ,v−−−−→ k ⇔ ∃π′i′j′k′. csπi = csπ
′

i′ ∧ csπk = csπ
′

k′ ∧ i′
cdπ′−−−→ j′ ddπ′,v−−−−→ k′ (7)

Theorem 2. If there exists no feasible execution π and index i such that πi ∈
dom(obs) and Iπ×{i}∩(

⋃
{ cdπ−−→, ddπ,v−−−→, dcdπ,v−−−−→ |v ∈ Var})∗ 6= ∅ then the program

is αLobs and βLobs secure.

Our prototypical implementation within the CPAchecker framework [1] cor-
responds to a finite automaton that uses five types of states to track control,
data and data control dependencies within an execution and marks potentially
critical states as target states who’s reachability is then tried to be refuted by
different analyses in the CPAchecker framework.

The analysis starts with the special state Init. The state Target marks a
potentially critical state. States of the form DD(v) are used to track a data de-
pendency on the variable v, the state CD(m) tracks a control dependency that
stretches up to node m which is the immediate post dominator of some branch-
ing node n that introduced this control dependency, and the state DCD(m,v)
denotes a data control dependency where m is the immediate post dominator of
the branching node that introduced this data control dependency and v is the
variable that could have be written on an alternative branch as identified by a
static preanalysis.

The transfer relation on these states is defined by s
n−→ t ⇔ Crit(s, n, t) ∧

Intro(t, n, s)∨s = t∧P (s, n) where Crit, Intro and P are defined as in Table 1.

Table 1. Rules for the transfer relation of the prototypical implementation.

s Intro(s,n, f) Crit(s,n, t) P(s,n)

Init false H ∩ use(n) 6= ∅ true
DD(v) v ∈ def(n) ∨ isDCD(v, f) v ∈ use(n) v 6∈ def(n)
CD(m) m = ipd(n) m 6= n m 6= n
DCD(m,v) m = ipd(n) ∧ ∃ cdv−−→ before m m = n ∧ isDD(v, t) m 6= n
Target n is observable false false



References

1. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software veri-
fication. In: Computer Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. pp. 184–190 (2011),
https://doi.org/10.1007/978-3-642-22110-1_16

2. Bohannon, A., Pierce, B.C., Sjöberg, V., Weirich, S., Zdancewic, S.: Reactive non-
interference. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security. pp. 79–90. CCS ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1653662.1653673

3. Xin, B., Zhang, X.: Efficient online detection of dynamic control dependence. In:
Proceedings of the 2007 international symposium on Software testing and analysis.
pp. 185–195. ISSTA ’07, ACM, New York, NY, USA (2007), http://doi.acm.org/
10.1145/1273463.1273489

https://doi.org/10.1007/978-3-642-22110-1_16
http://doi.acm.org/10.1145/1653662.1653673
http://doi.acm.org/10.1145/1273463.1273489
http://doi.acm.org/10.1145/1273463.1273489

	Security Through Safety

