
Modelling Haskell Programs with Free Monads
(Extended Abstract)

Sandra Dylus1 and Jan Christiansen2

1 University of Kiel
sad@informatik.uni-kiel.de

2 University of Applied Science Flensburg
jan.christiansen@hs-flensburg.de

When we want to prove statements about a Haskell program in an interactive
theorem prover like Agda or Coq, we have to transform the Haskell program into
an Agda/Coq program. As Agda/Coq programs have to be total and Haskell
programs are often not, we have to model partiality explicitly in the target
language. In a preceding work Abel et al. (2005) propose such a translation from
Haskell to Adga, which totalises potentially partial Haskell programs. A natural
way of modelling this partiality is to use the Maybe monad. A more general
approach is to generalise the monad at play. Indeed, the translation of Abel
et al. (2005) uses a monadic lifting of Haskell programs to define partial as well
as total Haskell functions in Adga. That is, functions are applied to monadic
arguments and yield a monadic result. Since functions yield monadic values, the
next step is to lift data type declarations as well. That is, each argument of a data
type constructor becomes a monadic value. Monadic values, which are results of
the lifted functions, can then be used directly in these lifted data types. All in
all, the transformation produces monad generic definitions for total functions;
partial functions cannot be defined for any monad, thus, partial functions are
explicitly instantiated by Maybe.

For the actual proof of properties, the monadic context is then explicitly in-
stantiated with the Identity monad for corresponding total Haskell definitions.
If any partial functions are involved, we have to instantiate all functions at play
with Maybe. Therefore, properties have to be explicitly proven in the appropri-
ate context. Properties about functions instantiated with Identity cannot be
reused when arguing about partial functions instantiated with Maybe and vice
versa. Moreover, in the work of Abel et al. (2005) all properties of interest are
proven for both instantiations, Maybe and Identity, respectively. As a conse-
quence, even properties that hold independent of the underlying monadic effect
are proven for both concrete instantiations.

A first try to implement a recursive Haskell data type – for example lists – in
Coq following their approach failed. A recursive data type that is parametrised
over a generic monad M fails to compile in Coq because of a non strictly positive
occurrence. This strict positivity restriction for inductive data type declarations
is also implemented in more recent versions of Agda, that is, this problem is not
a specific to Coq, but a general restriction regarding state-of-the-art dependently
typed languages. The underlying logic of the dependently typed language would



become inconsistent if we allow inductive data types that do not comply to strict
positivity.

In this work we propose to reanimate the approach of Abel et al. (2005)
by using known solutions concerning strict positivity and show how to prove
properties of Haskell programs in Coq. Besides the reanimation of the original
approach, we argue that due to our modelling, we are now also able to prove
monad generic properties without an unreasonable extra effort.

The first idea is to use free monads as introduced by Swierstra (2008) to
represent the possible monadic effect instead of a generic monadic parameter M.
Free monads capture the essence of a monad, that is, the operations >>= and
return, in a data type that is parametrised over a functor F. This functor has to
be strictly positive in order to define the free monad as an inductive data type.
Hence, we define the free monad using containers as presented by Abbott et al.
(2003). The same idea was realised by Keuchel and Schrijvers (2013) to define
fix points of data types for generic programming in Coq.

In order to demonstrate the applicability of our approach we show several
exemplary Haskell functions and properties for these functions. These examples
demonstrate the benefit of monad-generic proofs: although some of the consid-
ered functions are partial, we prove helping lemmas for all monads. This way
we can reuse these lemmas when considering statements in a total as well as in
a partial setting. However, we will observe that some statements about Haskell
functions only hold for all possible effects if the function at hand satisfies ad-
ditional requirements. These requirements are well-known from other effectful
programming languages like functional logic and probabilistic programming lan-
guages.

References

M. Abbott, T. Altenkirch, and N. Ghani. Categories of Containers, pages 23–38.
Springer Berlin Heidelberg, 2003.

A. Abel, M. Benke, A. Bove, J. Hughes, and U. Norell. Verifying haskell programs
using constructive type theory. In Proceedings of the 2005 ACM SIGPLAN
workshop on Haskell, pages 62–73, 2005.

S. Keuchel and T. Schrijvers. Generic datatypes à la carte. In Proceedings of the
9th ACM SIGPLAN Workshop on Generic Programming, pages 13–24, 2013.

W. Swierstra. Data types à la carte. Journal of functional programming, 18(04):
pages 423–436, 2008.


	Modelling Haskell Programs with Free Monads (Extended Abstract)

