
Structural type inference in Java-like languages

Martin Plümicke

Baden-Wuerttemberg Cooperative State University Stuttgart/Horb
Department of Computer Science
Florianstraße 15, D–72160 Horb

pl@dhbw.de

Abstract. In the past we considered type inference for Java with gener-
ics and lambdas. Our type inference algorithm determines nominal types
in subjection to a given environment. This is a hard restriction as sep-
arate compilation of Java classes without relying on type informations
of other classes is impossible. In this paper we present a type inference
algorithm for a Java-like language, that infers structural types without
a given environment. This allows separate compilation of Java classes
without relying on type informations of other classes.

1 Introduction

In this paper we give an algorithm which is a generalization of an idea, that
is given in [ADDZ05]. In the introducing example from [ADDZ05] the method
E m(B x){ return x.f1.f2; } is given. The compilation algorithm generates
the polymorphic typed Java expressions

E m(B x){ return [[x:B].f1:α].f2:β; },
where α and β are type variables. In this system m is applicable to instances of
the class B with the field f1 with the type α, where α must have a field f2 with
the type β and the constraint β ≤∗ E. In this approach B and E are still nominal
types.
We generalize this approach, such that also untyped methods like m(x){ return
x.f1.f2; } can be compiled, that means the type of x and the return type are
type variables, too.
Furthermore the results of our algorithms are Java-like programs, not byte-code,
as in [ADDZ05], such that the typed programs are readable and the linking
prcoess is reduced to a simple ckeck if a class implements a given interface.
This algorithm can be considered as generalization of our type inference algo-
rithms [Plü15,Plü07].
Let us consider an example that shows the differences. For the following program
no type can be inferred, as there is no type assumption for elementAt.

class A { m (v) { return v.elementAt(0); } }

Only with an import declaration import java.util.Vector; a type can be
inferred.
The generalized algorithm which we give in this paper infers for v a structural
type α, which has a method elementAt.

The basic idea

The result of our type inference algorithm is a parameterized class, where each
inferred type is represented by a parameter that implements a new generated
interfaces.

The paper is organized as follows. In the next section the language is introduced.
In the third section we give the algorithm. Then we present a large example.
Finally we close with a summary.

2 The language

We consider a core of a Java-like language without lambdas. In Figure 1 the
syntax of the language is given. It is an extension of Featherweight Java [IPW01].
The syntax is differed between input and output syntax. The input is an untyped

Input syntax :

L ::= class C extends (CT)∗ {f; M}

M ::= m(x){ return e; }

e ::= x | e.f | e.m(e) | new NCT(e) | (CT)e

NCT ::= CT | C<TVar = T>

T ::= CT | TVar

CT ::= C<CT>

Output syntax :

Lt ::= I∗ CLt

CLt ::= class C<TVar>[CONS] extends (CT)∗ {T f; Mt}

CONS ::= T extends T

MH ::= T m(T x);

Mt ::= MH { return et; }

et ::= x : T | e.f : T | e.m(e) : T | new NCT(e) : CT | (CT)e : CT

I ::= interface I<TVar>{T f; MH}

Fig. 1. The syntax

Java program L and the output is a typed Java program Lt, including generated
interfaces.
There are some extensions in comparison to usual Java. The class declarations in
the output syntax have the form class C<TVar> [CONS]. TVar are the generics

and [CONS] is a set of subtype constraints T extends T′, that must fulfill all
instances of the class. In any class there is an implicit constructor with all fields
(including them from the superclasses) as arguments. There is no differentiation
between extends and implements declarations. Both are declared by extends.
Interfaces can have fields. Furthermore, the use of the new-statement is allowed
without assigning all generics. This is done by the syntax C<TVar = CT>. The
not assigned generics are derived by the type inference algorithm.

3 The algorithm

The algorithm TI consists of three parts. First the function TYPE inserts types
(usually type variables) to all sub-terms and collects constraints. Second, the
function construct generates the interfaces and completes the constraints. Fi-
nally, the function solve unifies the type constraints and applies the unifier to
the class.

In the following definition we give the different forms of constraints, that are
collected in TYPE. This definition is oriented at [ADDZ05]:

Definition 1. (Type constraints)

– cl c′ means c has to be a subtype of c′.
– φ(c, f, c′) means c provides a field f with type c′.
– µ(c,m, c, (c′, c′)) means c provides a method m applicable to arguments of

type c, with return type c′ and parameters of type c′.

Note that µ(c,m, c, (c′, c′)) implicitly includes the constraints c ≤ c′.

Let < be the extends relation defined by the Java declarations und ≤∗ the
corresponding subtyping relation.

The type–inference algorithm

Let TypeAssumptions be a set of assumptions, that can consists of assumptions
for fields, methods and whole classes with fields and methods. The functions
fields and mtype extracts the typed fields respectively the typed methods from
a given class, as in [IPW01].

In the type inference algorithm we use the following name conventions for type
variables:

δfA: Type variable for the field f in the class A.
αm,i
A , βm,iA : Type variable for the i-th argument of the method m in the class A.
αm
A, β

m
A : is an abbreviation for the tuple αm,1

A , . . . , αm,n
A respectively βm,1A , . . . , βm,nA .

γmA: Type variable for the return type of the method m in the class A.

The main function TI The main function TI calls the three functions TYPE,
construct, and solve. The input is a set of type assumptions TypeAssumptions
and an untyped Java class L. The result Lt is the typed Java class extended by
a set of interfaces.

TI: TypeAssumptions× L→ Lt

TI (Ass, class A extends B { f; M }) =
let

(clt, C) = Type(Ass, cl)
(I1 . . . Im clt) = construct(clt, C)

in
(I1 . . . Im solve(clt))

The function TYPE The function TYPE inserts types (usually type vari-
ables) to all sub-terms and collects the constraints.

TYPE: TypeAssumptions× L → Lt × ConstraintsSet

TYPE(Ass, class A extends B { f; M }) = let
fass := { this.f : δfA | f ∈ f } ∪ { this.f : T | T f ∈ fields(B) }
mass := { this.m : αm

A → γmA | m(x){ return e; } ∈ M } ∪
{ this.m : aty → rty | mtype(m, B) = aty → rty }

AssAll = Ass ∪ fass ∪mass ∪ { this : A }
For m(x){ return e; } ∈ M {
Ass = AssAll ∪ { xj : αm,j

A | x = x1 . . . xn }
(et : rty, C

′) = TYPEExpr(Ass, e)
C = (C ∪ C ′)[γmA 7→ rty]}

Mt = { rty m(αm
A x){ return et; } | m(x){ return e; } ∈ M }

in(class A extends B { δfAf; Mt }, C)

The function TYPEExpr inserts types into the expressions and collects the
corresponding constraints. It is given for all cases of expressions e.

TYPEExpr: TypeAssumptions× e → et × ConstraintsSet

TYPEExpr(Ass, x) = let (x : θ) ∈ Ass in (x : θ, ∅)

TYPEExpr for field-application: First, the type of the receiver is deter-
mined. Then it is differed between fields with and without known receiver types.
In the known case the types are introduced. Otherwise a constraint is generated
that demands a corresponding field in the type.

TYPEExpr(Ass, e.f) =
let

(et : ty, C) = TYPEExpr(Ass, e)
in

if (ty is no type variable)&& (ty ∈ Ass)&&(rty f ∈ fields(ty))
then (((et : ty).f) : rty, C)
else (((et : ty).f) : δ

f
ty, {φ(ty, f, δfty) } ∪ C)

TYPEExpr for method-call: First, the types of the receiver and the argu-
ments are determined, recursively. Then it is differed between methods with and
without known receiver types. In the known case a subtype relation is introduced.
Otherwise a constraint is generated that demands a corresponding method in
the type.

TYPEExpr(Ass, e0.m(e)) = let
(e0t : ty0, C0) = TYPEExpr(Ass, e0)
(eit : tyi, Ci) = TYPEExpr(Ass, ei),∀16 i6n

in
if (ty0 is no type variable)&& (ty0 ∈ Ass)&& (mtype(m, ty0) = aty → rty)
then
((e0t : ty0).m(e1t : ty1, . . . , ent : tyn) :rty, (C0 ∪

⋃
i Ci) ∪ { ty l aty })

else
((e0t : ty0).m(e1t : ty1, . . . , ent : tyn) :γ

m
ty0
,

(C0 ∪
⋃
i Ci) ∪ {µ(ty0, m, ty, (γmty0 , β

m
ty0

)) })
where βmty0 and γmty0 are fresh type variables.

TYPEExpr for the new-statement: The use of the new-statement is allowed
without assigning all generics. This is done by the syntax C<TVar = CT>. First,
fresh type variables are introduced in the assumptions of the corresponding class.
Then the types of the arguments are determined. Finally, the assigned generics
are introduced and the subtype relations between the argument types and the
fields of the class and its super classes are added.

TYPEExpr(Ass ∪ { class A<T>[CA] extends B {TA f; Mt} }, new A<S>(e)) =
where S = [Tπ(1) = τ1, . . . , Tπ(k) = τk] with k ≤ n for |T| = n
let

ν fresh type variables, that substitute T and all type variables of CA
in class A
S′ = S[T 7→ ν]
(eit : tyi, Ci) = TYPEExpr(Ass, ei),∀16 i6m

in
(new A<S′>(e1t :ty1, . . . , emt :tym) :A<ν[ν 7→ τ | ν = τ ∈ S′]>,
(
⋃
i Ci) ∪ CA[ν 7→ τ] ∪ { ty l TB TA[ν 7→ τ] }

where fields(B) = TB g

TYPEExpr(Ass, (A)e) =
let

(ty, C) = TYPEExpr(Ass, e)
in

((A)e : A, C)

The function construct The function construct takes the result fromTYPE,
a typed class and a set of constraints. It generates for any type ty1, ty2 occuring

in constraints φ(ty1, f, δ) or µ(ty2, m, α, (γ, β)) corresponding interfaces with
the demanded fields and methods.

construct : Lt × ConstraintsSet→ Lt

construct(class A extends B { δAf; Mt }, C) {
CA = {αl β | αl β ∈ C } ∪ {αl β | µ(ty, m, α, (γ, β)) ∈ C }
if CA contains a constraint ty l ty′, where ty and ty′

are not type variables and ty 6≤∗ ty′ then fail exit
new_interf = { ι | φ(ι, f, γ) ∈ C } ∪ { ι | µ(ι, m, β, (γ, β′)) ∈ C }
For ι ∈ new_interf {

Iι = interface ι < > { } is generated
inh_tyterm = "ι < >"
For f with φ(ι, f, δ) ∈ C {

An field f and a fresh type variable T is added to the interface ι:

Iι = interface ι <args , T> {... T f; ... }

T is instantiated by δ in inh_tyterm: inh_tyterm = "ι<args’ ,δ>" }
For m with µ(ι, m, β, (γ, β′1, . . . , β′n)) ∈ C {

A method signature for m and fresh type variable T, T
are introduced into the interface ι:

Iι = interface ι <args ,T,T1, ..., Tn> {
fields
meth_sigs
T m(T1, ..., Tn);

}

T and T are instantiated by γ and β′ in inh_tyterm:
inh_tyterm = "ι<args’ ,γ, β′>" }

CA = CA[ι 7→ X] ∪ {X l inh_tyterm }, where X is a fresh type variable
σ = σ ∪ { ι 7→ X } }

tv = typevar(σ(δAf)) ∪ typevar(σ(Mt))
return Iι class A<tv>[CA] extends B { σ(δAf) f; σ(Mt) }

The function solve The function solve takes the result of construct and
solves the constraints of the class by a type unification algorithm, such that the
constraints contains only pairs with at least one type variable.

First we consider the type unification. In [Plü09] we gave a type unification for
Java 5.0 types. This algorithm is finitary but not unitary, as pairs T l ty are
solved by substituting T by all subtypes of ty. Now we give a different version of
the algorithm where Tl ty is not solved.

(reduce1)
C ∪ {C<θ1, . . . , θn>lD<θ′1, . . . , θ′n> }

C ∪ { θ1
.
= θ′1, . . . , θn

.
= θ′n }

where C<T1, . . . , Tn>≤∗D<T1, . . . , Tn> with Ti are type variables

(reduce2)
C ∪ {C<θ1, . . . , θn>

.
= C<θ′1, . . . , θ′n> }

C ∪ { θ1
.
= θ′1, . . . , θn

.
= θ′n }

(adapt1)
C ∪ {D<θ1, . . . , θn>lD′<θ′1, . . . , θ′m> }
C ∪ {D′<θ̃′1, . . . , θ̃′m>[Ti 7→ θi | 16 i6n]

.
= D′<θ′1, . . . , θ′m> }

where (D<T1, . . . , Tn>≤∗D′<θ̃′1, . . . , θ̃′m>) with Ti are type variables

(adapt2)
C ∪ {D<θ1, . . . , θn>l S1, S1 l S2, . . . , Sk−1 l Sk, Sk lD′<θ′1, . . . , θ′m> }
C ∪ {σ(D<θ1, . . . , θn>)l S1, S1 l S2, . . . ,

Sk−1 l Sk, Sk l σ(D′<θ′1, . . . , θ′m>) ∪ σ }
where
– k ≥ 1
– Si ∈ TV and
– (D<θ1, . . . , θn> 6≤∗D′<θ′1, . . . , θ′m>)

but (D<T1, . . . , Tn>≤∗D′<θ̃′1, . . . , θ̃′m>) with Ti ∈ TV
– σ = Unify1({D′<θ̃′1, . . . , θ̃′m>[Ti 7→ θi | 16 i6n]

.
= D′<θ′1, . . . , θ′m> })

(erase1)
C ∪ { θ l θ′ }
C

θ≤∗ θ′

(erase2)
C ∪ { θ .

= θ′ }
C

θ = θ′

(swap)
C ∪ { θ .

= T }
C ∪ {T .

= θ } θ 6∈ TV, T ∈ TV

(subst)
C ∪ {T .

= θ }
C[T 7→ θ] ∪ {T .

= θ } T ∈ TV and T occurs in C but not in θ

(refl)
C ∪ { θ l T1, T1 l T2, . . . , Tn−1 l Tn, Tn l θ }
C ∪ {Ti = θ | 16 i6n }

Fig. 2. Java type unification

The algorithm TUnify(C) is given by the rules (Figure 2) application the most
often as possible. If C contains finally of pairs T .

= ty, T l ty, or ty l T then C
is the result, otherwise the algorithm fails.

Lemma 1 (Termination). The algorithm TUnify terminates.

Lemma 2 (Soundness of TUnify). If a substitution σ is a solution of a
constraint set C then σ is also a solution of TUnify(C).

Lemma 3 (Completeness). Let C be a set of constraints C and σ′ a solution.
For σ = { T 7→ ty | T .

= ty ∈ TUnify(C) } there are substitutions σ′′ and σrest,
such that σ′ = σ′′ ◦ ((σrest ◦ σ) ∪ σrest).

Remark 1 (Most general unifier of TUnify). The substitution σrest is a solution
of the remaining pairs Tl ty and tylT. For any solution σ′ there is substitution
σ′rest, such that σ′rest ◦ σ is a most general unifier.

In the following we prove the two lemmata of soundness and completeness.

Proof. We do the prove by showing soundness and completeness for all type
unification rules. We do this as we show that the solutions before and after
application are the same.

reduce1: From the type term construction follows, if and only if σ is a solution
of {C<θ1, . . . , θn>lD<θ′1, . . . , θ

′
n> } it is also a solution of { θ1

.
= θ′1, . . . , θn

.
=

θ′n }, if C<T1, . . . , Tn>≤∗D<T1, . . . , Tn>.
adapt1: From the type term construction follows iff

D<T1, . . . , Tn>≤∗D′<θ̃′1, . . . , θ̃′m>, where Ti are type variables,

then

D<T1, . . . , Tn>[Ti 7→ θi | 16 i6n]≤∗D′<θ̃′1, . . . , θ̃′m>[Ti 7→ θi | 16 i6n].

This means iff σ is a solution of {D<θ1, . . . , θn>lD′<θ′1, . . . , θ
′
m> } it is also

a solution of {D′<θ̃′1, . . . , θ̃′m>[Ti 7→ θi | 16 i6n]
.
= D′<θ′1, . . . , θ

′
m> }

adapt2: As ≤∗ is a partial ordering and a partial ordering is transitiv from the
soundness and completeness adapt1 follows the soundness und completeness
of adapt2.

refl: As ≤∗ is a partial ordering and a partial ordering is reflexive soundness
and completeness follows directly.

erase1: obvious.
reduce2, erase2, swap, subst: These rule corresponds to the rules in [MM82].

Therefore soundness and completeness is given.

Now we give the function solve, where TUnify is called.
solve: Lt → Lt

solve(class A<T>[CA] extends B {ty f; Mt }) =
let

subst = TUnify(CA)
σ = { T 7→ ty | T .

= ty ∈ subst }
cs = { Tl ty | Tl ty ∈ subst } ∪ { ty l T | ty l T ∈ subst }
Tnew =

⋃
[(rty m(aty x){ return e; })∈σ(Mt)](TVar(rty) ∪ TVar(aty))

in
if is_solvable(cs) then

class A<Tnew>[cs] extends B {σ(ty) f; σ(Mt) }
else fail

4 Example

In this section we give an example, that shows first a structural typing of a class
independent from any environment. Then a concrete implementation of this class
is given.

Example 1. Let the following class be given

class A {
mt(x, y, z) { return x.sub(y).add(z); }

}

First TYPE is applied:

TYPE(∅, A)
mass = { this.mt : (αmt,1

A , αmt,2
A , αmt,3

A)→ γmtA }
AssAll = mass ∪ { this : A }
mt ∈M :

Ass = AssAll ∪ { x : αmt,1
A , y : αmt,2

A , z : αmt,3
A }

TYPEExpr(Ass, x.sub(y).add(z))
TYPEExpr(Ass, x.sub(y))

TYPEExpr(Ass, x)

Result (x : αmt,1
A , ∅)

TYPEExpr(Ass, y)

Result (y : αmt,2
A , ∅)

C = {µ(αmt,1
A , sub, αmt,2

A , (γsub
αmt,1
A

, βsub,1
αmt,1
A

)) }

Result ([[x : αmt,1
A].sub([y : αmt,2

A]) : γsub
αmt,1
A

], C)

TYPEExpr(Ass, z)

Result (z : αmt,3
A , ∅)

C = C ∪ {µ(γsub
αmt,1
A

, add, αmt,3
A , (γadd

γsub
αmt,1
A

, βadd,1
γsub
αmt,1
A

)) }

Result ([[[x : αmt,1
A].sub([y : αmt,2

A]) : γsub
αmt,1
A

].add(z : αmt,3
A) : γadd

γsub
αmt,1
A

],

C) =: et
Result(clt, C)
with clt := class A {

γadd
γsub
αmt,1
A

mt(αmt,1
A x, αmt,2

A y, αmt,3
A z) { return et; }

}
and C = {µ(αmt,1

A , sub, αmt,2
A , (γsub

αmt,1
A

, βsub,1
αmt,1
A

)),

µ(γsub
αmt,1
A

, add, αmt,3
A , (γadd

γsub
αmt,1
A

, βadd,1
γsub
αmt,1
A

)) }

Second, construct is applied to TYPE’s result:

construct(clt, C) :

CA = {αmt,2
A l βsub,1

αmt,1
A

, αmt,3
A l βadd,1

γsub
αmt,1
A

}

new_interf = {αmt,1
A , γsub

αmt,1
A

}

αmt,1
A : For µ(αmt,1

A , sub, αmt,2
A , (γsub

αmt,1
A

, βsub,1
αmt,1
A

)) ∈ C: the following interface is

constructed:

interface αmt,1
A <T, T1> { T sub(T1 x); }

inh_tyterm = αmt,1
A <γsub

αmt,1
A

, βsub,1
αmt,1
A

>

CA = CA ∪ { X1l inh_tyterm }
σ = {αmt,1

A 7→ X1 }
γsub
αmt,1
A

: For µ(γsub
αmt,1
A

, add, αmt,3
A , (γadd

γsub
αmt,1
A

, βadd,1
γsub
αmt,1
A

)) ∈ C the following interface

is constructed:

interface γsub
αmt,1
A

<T, T1> { T add(T1 x); }

inh_tyterm = γsub
αmt,1
A

<γadd
γsub
αmt,1
A

, βadd,1
γsub
αmt,1
A

>

CA = CA ∪ { X2l inh_tyterm }
σ = σ ∪ { γsub

αmt,1
A

7→ X2 }

tv ={ X1, αmt,2
A , αmt,3

A , γadd
γsub
αmt,1
A

}

It holds σ = {αmt,1
A 7→ X1,
γsub
αmt,1
A

7→ X2 }

and CA ={αmt,2
A l βsub,1

αmt,1
A

,

αmt,3
A l βadd,1

γsub
αmt,1
A

,

X1l αmt,1
A <X2, βsub,1

αmt,1
A

>,

X2l γsub
αmt,1
A

<γadd
γsub
αmt,1
A

, βadd,1
γsub
αmt,1
A

> }

The result class is given as:

class A <X1, αmt,2
A , αmt,3

A , γadd
γsub
αmt,1
A

>[

αmt,2
A extends βsub,1

αmt,1
A

αmt,3
A extends βadd,1

γsub
αmt,1
A

,

X1 extends αmt,1
A <X2, βsub,1

αmt,1
A

>,

X2 extends γsub
αmt,1
A

<γadd
γsub
αmt,1
A

,βadd,1

γsub
αmt,1
A

>

]
{

γadd
γsub
αmt,1
A

mt(X1 x, αmt,2
A y, αmt,3

A z) { return x.sub(y).add(z); }

}

As

CA = { [αmt,2
A l βsub,1

αmt,1
A

], [αmt,3
A l βadd,1

γsub
αmt,1
A

], [X1l αmt,1
A <X2, βsub,1

αmt,1
A

>],

[X2l γsub
αmt,1
A

<γadd
γsub
αmt,1
A

, βadd,1
γsub
αmt,1
A

>] }

is in solved form, TUnify respectively solve changes nothing. This means the
result of construct is the result of TI.

In the following we extend the example, such that an instance of class A is used.
For this implementations of the inerfaces αmt,1

A and γsub
αmt,1
A

must be given. We

give one class myInteger, which implements both interfaces:

class myInteger extends αmt,1
A <myInteger, myInteger>,
γsub
αmt,1
A

<myInteger, myInteger> {

Integer i;

myInteger sub(myInteger x) { return new myInteger(i - x.i); }
myInteger add(myInteger x) { return new myInteger(i + x.i); } }

In the class Main an instance of A is used and the method mt is called.

class Main {
main() { return new A<>()

.mt(new myInteger(2),
new myInteger(1),
new myInteger(3)); }

}

We call TI for Main with the set of assumptions Ass consisting of the class A
and the class myInteger.

In TYPEExpr(Ass, new A<>()) the class A gets fresh type variables:

class A <ν1,ν3,ν4,ν6>
[ν3 extends ν5,
ν4 extends ν7,
ν1 extendsαmt,1

A <ν2,ν5>,
ν2 extends γsub

αmt,1
A

<ν6,ν7>]{

ν6 mt(ν1 x, ν3 y, ν4 z) { return x.sub(y).add(z); }
}

The result of TYPEExpr(Ass, new A<>()) is: (new A<>() :A<ν1, ν3, ν4, ν6>,
CnewA)

with

CnewA = { ν3 l ν5, ν4 l ν7, ν1 l αmt,1
A <ν2, ν5>, ν2 l γm

αmt,1
A

<ν6, ν7> }

The constraint set of the result of TYPE is given as

Cmain = { ν3 l ν5, ν4 l ν7, ν1 l αmt,1
A <ν2, ν5>, ν2 l γsub

αmt,1
A

<ν6, ν7>,

myIntegerl ν1, myIntegerl ν3, myIntegerl ν4 }

The function construct adds no interfaces, as there is no call of abstract fields
or methods. Therefore the result of construct is given as:

class Main<ν6> [CMain] {
ν6 main() {

return new A<>()
.mt(new myInteger(2), new myInteger(1), new myInteger(3));

}
}

In solve Cmain is unified: The class declarations implies

myInteger≤∗ αmt,1
A <myInteger, myInteger>

and
myInteger≤∗ γsub

αmt,1
A

<myInteger, myInteger>.

With the adapt2 -rule follows from myIntegerl ν1, ν1 l αmt,1
A <ν2, ν5>:

myIntegerl ν1, ν1 l αmt,1
A <myInteger, myInteger>,

ν2
.
= myInteger, ν5

.
= myInteger.

From this follows with the subst-rule

myIntegerl γsub
αmt,1
A

<ν6, ν7>

and with the adapt1 -rule:

γsub
αmt,1
A

<myInteger, myInteger> .
= γsub

αmt,1
A

<ν6, ν7>.

With the reduce1 - and the swap-rule we get:

ν6
.
= myInteger, ν7

.
= myInteger.

With the subst-rule follows from

myIntegerl ν3, ν3 l myInteger and myIntegerl ν4, ν4 l myInteger

and from this with the refl -rule:

ν3
.
= myInteger, ν4

.
= myInteger.

The result of solve is given as:

{ myIntegerl ν1, ν1 l αmt,1
A <myInteger, myInteger>

ν2
.
= myInteger, ν5

.
= myInteger, ν6

.
= myInteger,

ν7
.
= myInteger, ν3

.
= myInteger, ν4

.
= myInteger }

The resulting Java class is given as:
class Main [myInteger extends ν1,

ν1 extends αmt,1
A <myInteger, myInteger>]

{
myInteger main() {

return new A<>().mt(new myInteger(2),
new myInteger(1),
new myInteger(3)); }

}

There is one remaining type variable ν1, that is not used in a argument- or
return-type of a method. Therefore ν1 is no class-parameter of Main. The two
remaining bounds of ν1 are consistent. This means main is executable. The result
of the execution is 4.

5 Summary

We have presented a type inference algorithm for a Java-like language. The
algorithm allows to declare type-less Java classes independently from any en-
vironment. This allows separate compilation of Java classes without relying on
type informations of other classes. The algorithm infers structural types, that are
given as generated interfaces. The instances have to implement these interfaces.

References

[ADDZ05] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena Zucca.
Polymorphic bytecode: Compositional compilation for Java-like languages.
In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’05, pages 26–37, New York, NY,
USA, 2005. ACM.

[IPW01] Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight
java: a minimal core calculus for Java and GJ. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 23(3):396–450, 2001.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4:258–282, 1982.

[Plü07] Martin Plümicke. Typeless Programming in Java 5.0 with Wildcards. In
Vasco Amaral, Luís Veiga, Luís Marcelino, and H. Conrad Cunningham,
editors, 5th International Conference on Principles and Practices of Pro-
gramming in Java, volume 272 of ACM International Conference Proceeding
Series, pages 73–82, September 2007.

[Plü09] Martin Plümicke. Java type unification with wildcards. In Dietmar
Seipel, Michael Hanus, and Armin Wolf, editors, 17th International Confer-
ence, INAP 2007, and 21st Workshop on Logic Programming, WLP 2007,
Würzburg, Germany, October 4-6, 2007, Revised Selected Papers, volume
5437 of Lecture Notes in Artificial Intelligence, pages 223–240. Springer-
Verlag Heidelberg, 2009.

[Plü15] Martin Plümicke. More type inference in Java 8. In Andrei Voronkov and
Irina Virbitskaite, editors, Perspectives of System Informatics - 9th Inter-
national Ershov Informatics Conference, PSI 2014, St. Petersburg, Russia,
June 24-27, 2014. Revised Selected Papers, volume 8974 of Lecture Notes in
Computer Science, pages 248–256. Springer, 2015.

